A PARAMETERIZED HALTING PROBLEM, TRUTH AND THE MRDP THEOREM
We study the parameterized complexity of the problem to decide whether a given natural number n satisfies a given $\Delta _0$ -formula $\varphi (x)$ ; the parameter is the size of $\varphi $ . This parameterization focusses attention on instances where n is large compared to the size of $\varphi $ ....
Gespeichert in:
Veröffentlicht in: | The Journal of symbolic logic 2024-09, p.1-26 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the parameterized complexity of the problem to decide whether a given natural number
n
satisfies a given
$\Delta _0$
-formula
$\varphi (x)$
; the parameter is the size of
$\varphi $
. This parameterization focusses attention on instances where
n
is large compared to the size of
$\varphi $
. We show unconditionally that this problem does not belong to the parameterized analogue of
$\mathsf {AC}^0$
. From this we derive that certain natural upper bounds on the complexity of our parameterized problem imply certain separations of classical complexity classes. This connection is obtained via an analysis of a parameterized halting problem. Some of these upper bounds follow assuming that
$I\Delta _0$
proves the MRDP theorem in a certain weak sense. |
---|---|
ISSN: | 0022-4812 1943-5886 |
DOI: | 10.1017/jsl.2024.44 |