A PARAMETERIZED HALTING PROBLEM, TRUTH AND THE MRDP THEOREM

We study the parameterized complexity of the problem to decide whether a given natural number n satisfies a given $\Delta _0$ -formula $\varphi (x)$ ; the parameter is the size of $\varphi $ . This parameterization focusses attention on instances where n is large compared to the size of $\varphi $ ....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of symbolic logic 2024-09, p.1-26
Hauptverfasser: CHEN, YIJIA, MÜLLER, MORITZ, YOKOYAMA, KEITA
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the parameterized complexity of the problem to decide whether a given natural number n satisfies a given $\Delta _0$ -formula $\varphi (x)$ ; the parameter is the size of $\varphi $ . This parameterization focusses attention on instances where n is large compared to the size of $\varphi $ . We show unconditionally that this problem does not belong to the parameterized analogue of $\mathsf {AC}^0$ . From this we derive that certain natural upper bounds on the complexity of our parameterized problem imply certain separations of classical complexity classes. This connection is obtained via an analysis of a parameterized halting problem. Some of these upper bounds follow assuming that $I\Delta _0$ proves the MRDP theorem in a certain weak sense.
ISSN:0022-4812
1943-5886
DOI:10.1017/jsl.2024.44