MAXIMAL STABLE QUOTIENTS OF INVARIANT TYPES IN NIP THEORIES
For a NIP theory T , a sufficiently saturated model ${\mathfrak C}$ of T , and an invariant (over some small subset of ${\mathfrak C}$ ) global type p , we prove that there exists a finest relatively type-definable over a small set of parameters from ${\mathfrak C}$ equivalence relation on the set o...
Gespeichert in:
Veröffentlicht in: | The Journal of symbolic logic 2023-10, p.1-25 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a NIP theory
T
, a sufficiently saturated model
${\mathfrak C}$
of
T
, and an invariant (over some small subset of
${\mathfrak C}$
) global type
p
, we prove that there exists a finest relatively type-definable over a small set of parameters from
${\mathfrak C}$
equivalence relation on the set of realizations of
p
which has stable quotient. This is a counterpart for equivalence relations of the main result of [2] on the existence of maximal stable quotients of type-definable groups in NIP theories. Our proof adapts the ideas of the proof of this result, working with relatively type-definable subsets of the group of automorphisms of the monster model as defined in [3]. |
---|---|
ISSN: | 0022-4812 1943-5886 |
DOI: | 10.1017/jsl.2023.78 |