SELF-DIVISIBLE ULTRAFILTERS AND CONGRUENCES IN

We introduce self-divisible ultrafilters, which we prove to be precisely those $w$ such that the weak congruence relation $\equiv _w$ introduced by Šobot is an equivalence relation on $\beta {\mathbb Z}$ . We provide several examples and additional characterisations; notably we show that $w$ is self...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of symbolic logic 2023-07, p.1-18
Hauptverfasser: DI NASSO, MAURO, LUPERI BAGLINI, LORENZO, MENNUNI, ROSARIO, PIEROBON, MORENO, RAGOSTA, MARIACLARA
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce self-divisible ultrafilters, which we prove to be precisely those $w$ such that the weak congruence relation $\equiv _w$ introduced by Šobot is an equivalence relation on $\beta {\mathbb Z}$ . We provide several examples and additional characterisations; notably we show that $w$ is self-divisible if and only if $\equiv _w$ coincides with the strong congruence relation $\mathrel {\equiv ^{\mathrm {s}}_{w}}$ , if and only if the quotient $(\beta {\mathbb Z},\oplus )/\mathord {\mathrel {\equiv ^{\mathrm {s}}_{w}}}$ is a profinite group. We also construct an ultrafilter $w$ such that $\equiv _w$ fails to be symmetric, and describe the interaction between the aforementioned quotient and the profinite completion $\hat {{\mathbb Z}}$ of the integers.
ISSN:0022-4812
1943-5886
DOI:10.1017/jsl.2023.51