COUNTING SIBLINGS IN UNIVERSAL THEORIES

We show that if a countable structure M in a finite relational language is not cellular, then there is an age-preserving $N \supseteq M$ such that $2^{\aleph _0}$ many structures are bi-embeddable with N. The proof proceeds by a case division based on mutual algebraicity.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of symbolic logic 2022-09, Vol.87 (3), p.1130-1155
Hauptverfasser: BRAUNFELD, SAMUEL, LASKOWSKI, MICHAEL C.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that if a countable structure M in a finite relational language is not cellular, then there is an age-preserving $N \supseteq M$ such that $2^{\aleph _0}$ many structures are bi-embeddable with N. The proof proceeds by a case division based on mutual algebraicity.
ISSN:0022-4812
1943-5886
DOI:10.1017/jsl.2022.3