ON CATEGORICITY IN SUCCESSIVE CARDINALS
We investigate, in ZFC, the behavior of abstract elementary classes (AECs) categorical in many successive small cardinals. We prove for example that a universal $\mathbb {L}_{\omega _1, \omega }$ sentence categorical on an end segment of cardinals below $\beth _\omega $ must be categorical also ever...
Gespeichert in:
Veröffentlicht in: | The Journal of symbolic logic 2022-06, Vol.87 (2), p.545-563 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate, in ZFC, the behavior of abstract elementary classes (AECs) categorical in many successive small cardinals. We prove for example that a universal
$\mathbb {L}_{\omega _1, \omega }$
sentence categorical on an end segment of cardinals below
$\beth _\omega $
must be categorical also everywhere above
$\beth _\omega $
. This is done without any additional model-theoretic hypotheses (such as amalgamation or arbitrarily large models) and generalizes to the much broader framework of tame AECs with weak amalgamation and coherent sequences. |
---|---|
ISSN: | 0022-4812 1943-5886 |
DOI: | 10.1017/jsl.2020.25 |