ON CATEGORICITY IN SUCCESSIVE CARDINALS

We investigate, in ZFC, the behavior of abstract elementary classes (AECs) categorical in many successive small cardinals. We prove for example that a universal $\mathbb {L}_{\omega _1, \omega }$ sentence categorical on an end segment of cardinals below $\beth _\omega $ must be categorical also ever...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of symbolic logic 2022-06, Vol.87 (2), p.545-563
1. Verfasser: VASEY, SEBASTIEN
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate, in ZFC, the behavior of abstract elementary classes (AECs) categorical in many successive small cardinals. We prove for example that a universal $\mathbb {L}_{\omega _1, \omega }$ sentence categorical on an end segment of cardinals below $\beth _\omega $ must be categorical also everywhere above $\beth _\omega $ . This is done without any additional model-theoretic hypotheses (such as amalgamation or arbitrarily large models) and generalizes to the much broader framework of tame AECs with weak amalgamation and coherent sequences.
ISSN:0022-4812
1943-5886
DOI:10.1017/jsl.2020.25