ON THE NUMBER OF COUNTABLE MODELS OF A COUNTABLE NSOP 1 THEORY WITHOUT WEIGHT ω

In this article, we prove that if a countable non- ${\aleph _0}$ -categorical NSOP 1 theory with nonforking existence has finitely many countable models, then there is a finite tuple whose own preweight is ω . This result is an extension of a theorem of the author on any supersimple theory.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of symbolic logic 2019-09, Vol.84 (3), p.1168-1175
1. Verfasser: KIM, BYUNGHAN
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, we prove that if a countable non- ${\aleph _0}$ -categorical NSOP 1 theory with nonforking existence has finitely many countable models, then there is a finite tuple whose own preweight is ω . This result is an extension of a theorem of the author on any supersimple theory.
ISSN:0022-4812
1943-5886
DOI:10.1017/jsl.2019.47