ON THE NUMBER OF COUNTABLE MODELS OF A COUNTABLE NSOP 1 THEORY WITHOUT WEIGHT ω
In this article, we prove that if a countable non- ${\aleph _0}$ -categorical NSOP 1 theory with nonforking existence has finitely many countable models, then there is a finite tuple whose own preweight is ω . This result is an extension of a theorem of the author on any supersimple theory.
Gespeichert in:
Veröffentlicht in: | The Journal of symbolic logic 2019-09, Vol.84 (3), p.1168-1175 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we prove that if a countable non-
${\aleph _0}$
-categorical NSOP
1
theory with nonforking existence has finitely many countable models, then there is a finite tuple whose own preweight is
ω
. This result is an extension of a theorem of the author on any supersimple theory. |
---|---|
ISSN: | 0022-4812 1943-5886 |
DOI: | 10.1017/jsl.2019.47 |