METRIC ABSTRACT ELEMENTARY CLASSES AS ACCESSIBLE CATEGORIES

We show that metric abstract elementary classes (mAECs) are, in the sense of [15], coherent accessible categories with directed colimits, with concrete ℵ 1 -directed colimits and concrete monomorphisms. More broadly, we define a notion of κ-concrete AEC —an AEC-like category in which only the κ -dir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of symbolic logic 2017-09, Vol.82 (3), p.1022-1040
Hauptverfasser: LIEBERMAN, M., ROSICKÝ, J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that metric abstract elementary classes (mAECs) are, in the sense of [15], coherent accessible categories with directed colimits, with concrete ℵ 1 -directed colimits and concrete monomorphisms. More broadly, we define a notion of κ-concrete AEC —an AEC-like category in which only the κ -directed colimits need be concrete—and develop the theory of such categories, beginning with a category-theoretic analogue of Shelah’s Presentation Theorem and a proof of the existence of an Ehrenfeucht–Mostowski functor in case the category is large. For mAECs in particular, arguments refining those in [15] yield a proof that any categorical mAEC is μ- d - stable in many cardinals below the categoricity cardinal.
ISSN:0022-4812
1943-5886
DOI:10.1017/jsl.2016.39