METRIC ABSTRACT ELEMENTARY CLASSES AS ACCESSIBLE CATEGORIES
We show that metric abstract elementary classes (mAECs) are, in the sense of [15], coherent accessible categories with directed colimits, with concrete ℵ 1 -directed colimits and concrete monomorphisms. More broadly, we define a notion of κ-concrete AEC —an AEC-like category in which only the κ -dir...
Gespeichert in:
Veröffentlicht in: | The Journal of symbolic logic 2017-09, Vol.82 (3), p.1022-1040 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that metric abstract elementary classes (mAECs) are, in the sense of [15], coherent accessible categories with directed colimits, with concrete ℵ
1
-directed colimits and concrete monomorphisms. More broadly, we define a notion of
κ-concrete AEC
—an AEC-like category in which only the
κ
-directed colimits need be concrete—and develop the theory of such categories, beginning with a category-theoretic analogue of Shelah’s Presentation Theorem and a proof of the existence of an Ehrenfeucht–Mostowski functor in case the category is large. For mAECs in particular, arguments refining those in [15] yield a proof that any categorical mAEC is
μ-
d
-
stable in many cardinals below the categoricity cardinal. |
---|---|
ISSN: | 0022-4812 1943-5886 |
DOI: | 10.1017/jsl.2016.39 |