Stable anisotropic minimal hypersurfaces in

We show that a complete, two-sided, stable immersed anisotropic minimal hypersurface in $\mathbf {R}^4$ has intrinsic cubic volume growth, provided the parametric elliptic integral is $C^2$ -close to the area functional. We also obtain an interior volume upper bound for stable anisotropic minimal hy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Forum of mathematics. Pi 2023-02, Vol.11, Article e3
Hauptverfasser: Chodosh, Otis, Li, Chao
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that a complete, two-sided, stable immersed anisotropic minimal hypersurface in $\mathbf {R}^4$ has intrinsic cubic volume growth, provided the parametric elliptic integral is $C^2$ -close to the area functional. We also obtain an interior volume upper bound for stable anisotropic minimal hypersurfaces in the unit ball. We can estimate the constants explicitly in all of our results. In particular, this paper gives an alternative proof of our recent stable Bernstein theorem for minimal hypersurfaces in $\mathbf {R}^4$ . The new proof is more closely related to techniques from the study of strictly positive scalar curvature.
ISSN:2050-5086
2050-5086
DOI:10.1017/fmp.2023.1