Finite data rigidity for one-dimensional expanding maps
Let $f,g$ be $C^2$ expanding maps on the circle which are topologically conjugate. We assume that the derivatives of f and g at corresponding periodic points coincide for some large period N . We show that f and g are ‘approximately smoothly conjugate.’ Namely, we construct a $C^2$ conjugacy $h_N$ s...
Gespeichert in:
Veröffentlicht in: | Ergodic theory and dynamical systems 2024-11, p.1-22 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
$f,g$
be
$C^2$
expanding maps on the circle which are topologically conjugate. We assume that the derivatives of
f
and
g
at corresponding periodic points coincide for some large period
N
. We show that
f
and
g
are ‘approximately smoothly conjugate.’ Namely, we construct a
$C^2$
conjugacy
$h_N$
such that
$h_N$
is exponentially close to
h
in the
$C^0$
topology, and
$f_N:=h_N^{-1}gh_N$
is exponentially close to
f
in the
$C^1$
topology. Our main tool is a uniform effective version of Bowen’s equidistribution of weighted periodic orbits to the equilibrium state. |
---|---|
ISSN: | 0143-3857 1469-4417 |
DOI: | 10.1017/etds.2024.83 |