Uniform syndeticity in multiple recurrence
The main theorem of this paper establishes a uniform syndeticity result concerning the multiple recurrence of measure-preserving actions on probability spaces. More precisely, for any integers $d,l\geq 1$ and any $\varepsilon> 0$ , we prove the existence of $\delta>0$ and $K\geq 1$ (dependent...
Gespeichert in:
Veröffentlicht in: | Ergodic theory and dynamical systems 2024-05, p.1-22 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The main theorem of this paper establishes a uniform syndeticity result concerning the multiple recurrence of measure-preserving actions on probability spaces. More precisely, for any integers
$d,l\geq 1$
and any
$\varepsilon> 0$
, we prove the existence of
$\delta>0$
and
$K\geq 1$
(dependent only on
d
,
l
, and
$\varepsilon $
) such that the following holds: Consider a solvable group
$\Gamma $
of derived length
l
, a probability space
$(X, \mu )$
, and
d
pairwise commuting measure-preserving
$\Gamma $
-actions
$T_1, \ldots , T_d$
on
$(X, \mu )$
. Let
E
be a measurable set in
X
with
$\mu (E) \geq \varepsilon $
. Then,
K
many (left) translates of
$$ \begin{align*} \big\{\gamma\in\Gamma\colon \mu(T_1^{\gamma^{-1}}(E)\cap T_2^{\gamma^{-1}} \circ T^{\gamma^{-1}}_1(E)\cap \cdots \cap T^{\gamma^{-1}}_d\circ T^{\gamma^{-1}}_{d-1}\circ \cdots \circ T^{\gamma^{-1}}_1(E))\geq \delta \big\} \end{align*} $$
cover
$\Gamma $
. This result extends and refines uniformity results by Furstenberg and Katznelson. As a combinatorial application, we obtain the following uniformity result. For any integers
$d,l\geq 1$
and any
$\varepsilon> 0$
, there are
$\delta>0$
and
$K\geq 1$
(dependent only on
d
,
l
, and
$\varepsilon $
) such that for all finite solvable groups
G
of derived length
l
and any subset
$E\subset G^d$
with
$m^{\otimes d}(E)\geq \varepsilon $
(where
m
is the uniform measure on
G
), we have that
K
-many (left) translates of
$$ \begin{align*} \{g\in G\colon &m^{\otimes d}(\{(a_1,\ldots,a_n)\in G^d\colon \\ & (a_1,\ldots,a_n),(ga_1,a_2,\ldots,a_n),\ldots,(ga_1,ga_2,\ldots, ga_n)\in E\})\geq \delta \} \end{align*} $$
cover
G
. The proof of our main result is a consequence of an ultralimit version of Austin’s amenable ergodic Szeméredi theorem. |
---|---|
ISSN: | 0143-3857 1469-4417 |
DOI: | 10.1017/etds.2024.40 |