THE LARGE STRUCTURES OF GROTHENDIECK FOUNDED ON FINITE-ORDER ARITHMETIC

The large-structure tools of cohomology including toposes and derived categories stay close to arithmetic in practice, yet published foundations for them go beyond ZFC in logical strength. We reduce the gap by founding all the theorems of Grothendieck’s SGA, plus derived categories, at the level of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The review of symbolic logic 2020-06, Vol.13 (2), p.296-325
1. Verfasser: MCLARTY, COLIN
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The large-structure tools of cohomology including toposes and derived categories stay close to arithmetic in practice, yet published foundations for them go beyond ZFC in logical strength. We reduce the gap by founding all the theorems of Grothendieck’s SGA, plus derived categories, at the level of Finite-Order Arithmetic, far below ZFC. This is the weakest possible foundation for the large-structure tools because one elementary topos of sets with infinity is already this strong.
ISSN:1755-0203
1755-0211
DOI:10.1017/S1755020319000340