Classification of maize inbred lines into heterotic groups based on yield and yield attributing traits

This study investigated the combining ability, heterosis and heterotic grouping of maize (Zea mays L.) inbred lines to enhance hybrid performance and productivity. Twenty-four hybrids were developed by crossing eight inbred lines with three testers, and their performance was evaluated for two years...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant genetic resources: characterization and utilization 2024-10, p.1-13
Hauptverfasser: Bhatla, Anshika, Angidi, Srushtideep, Thomas, Noel, Madankar, Kartik, Shahi, J. P.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study investigated the combining ability, heterosis and heterotic grouping of maize (Zea mays L.) inbred lines to enhance hybrid performance and productivity. Twenty-four hybrids were developed by crossing eight inbred lines with three testers, and their performance was evaluated for two years at Banaras Hindu University's agricultural research farm. Data on yield and yield-attributing traits were collected from selectively centred competitive plants in each row, avoiding border plants to reduce errors. Biometrical techniques, cluster analysis, and statistical tools were employed to measure general combining ability (GCA), specific combining ability (SCA), and standard heterosis, providing insights into hybrid performance. Analysis of variance revealed significant mean square values for GCA and SCA across most traits studied. Various methods were utilized, including SCA effects, HGCAMT (Heterosis Grouping by Combining Ability of Multiple Traits), and HSGCA (Heterotic Grouping based on Specific and General Combining Ability). The study identified HUZM-242 × CML-286 and HUZM-53 × CML-286 as crosses displaying higher grain yield compared to the check line DKC 7074 and exhibiting positive heterosis. The findings offer valuable guidance for maize breeding programmes by accurately identifying heterotic groups, enabling breeders to select inbred lines more likely to produce high-performing hybrids. This targeted selection reduces the number of necessary cross-breeding trials, saving time and resources. Additionally, hybrids derived from crosses between lines from different heterotic groups exhibit superior performance due to higher heterosis. These conclusions support advancements in maize breeding strategies, ultimately contributing to agricultural sustainability through increased productivity, resource efficiency, and economic benefits for farmers.
ISSN:1479-2621
1479-263X
DOI:10.1017/S1479262124000509