Division theorems for inverse and pseudo-inverse semigroups

We show that every inverse semigroup is an idempotent separating homomorphic image of a convex inverse subsemigroup of a P-semigroup P(G, L, L), where G acts transitively on L. This division theorem for inverse semigroups can be applied to obtain a division theorem for pseudo-inverse semigroups.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Australian Mathematical Society (2001) 1981-12, Vol.31 (4), p.415-420
1. Verfasser: Pastijn, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that every inverse semigroup is an idempotent separating homomorphic image of a convex inverse subsemigroup of a P-semigroup P(G, L, L), where G acts transitively on L. This division theorem for inverse semigroups can be applied to obtain a division theorem for pseudo-inverse semigroups.
ISSN:1446-7887
1446-8107
DOI:10.1017/S1446788700024204