Division theorems for inverse and pseudo-inverse semigroups
We show that every inverse semigroup is an idempotent separating homomorphic image of a convex inverse subsemigroup of a P-semigroup P(G, L, L), where G acts transitively on L. This division theorem for inverse semigroups can be applied to obtain a division theorem for pseudo-inverse semigroups.
Gespeichert in:
Veröffentlicht in: | Journal of the Australian Mathematical Society (2001) 1981-12, Vol.31 (4), p.415-420 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that every inverse semigroup is an idempotent separating homomorphic image of a convex inverse subsemigroup of a P-semigroup P(G, L, L), where G acts transitively on L. This division theorem for inverse semigroups can be applied to obtain a division theorem for pseudo-inverse semigroups. |
---|---|
ISSN: | 1446-7887 1446-8107 |
DOI: | 10.1017/S1446788700024204 |