Adding Distinct Congruence Classes
Let S be a generating subset of a cyclic group G such that 0=∉S and [mid ]S[mid ][ges ]5. We show that the number of sums of the subsets of S is at least min([mid ]G[mid ], 2[mid ]S[mid ]). Our bound is best possible. We obtain similar results for abelian groups and mention the generalization to non...
Gespeichert in:
Veröffentlicht in: | Combinatorics, probability & computing probability & computing, 1998-03, Vol.7 (1), p.81-87 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 87 |
---|---|
container_issue | 1 |
container_start_page | 81 |
container_title | Combinatorics, probability & computing |
container_volume | 7 |
creator | HAMIDOUNE, Y. O. |
description | Let S be a generating subset of a cyclic group
G such that 0=∉S and
[mid ]S[mid ][ges ]5. We show
that the number of sums of the subsets of S is at
least min([mid ]G[mid ], 2[mid ]S[mid ]).
Our bound is best possible. We obtain similar results for
abelian groups and mention the generalization to
nonabelian groups. |
doi_str_mv | 10.1017/S0963548397003180 |
format | Article |
fullrecord | <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S0963548397003180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0963548397003180</cupid><sourcerecordid>10_1017_S0963548397003180</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-2c32aab455bcff5429e51c2b2d73bb4d13d1e1414631d6d84647e8538ffa8463</originalsourceid><addsrcrecordid>eNp9T01Lw0AUXETBWP0B3oL36L79TI4ltVWoqFiKt2WT3Q2pbSK7Kei_d0OLF8HT8JiZNzMIXQO-BQzy7g0XgnKW00JiTCHHJygBJoqMgKCnKBnpbOTP0UUIG4wx5wIn6GZqTNs16awNQ9vVQ1r2XeP3tqttWm51CDZcojOnt8FeHXGCVvP7VfmQLZ8Xj-V0mdWU8CEjEbSuGOdV7RxnpLAcalIRI2lVMQPUgAUWS1EwwuRMMGlzTnPndDzoBMHhbe37ELx16tO3O-2_FWA1blR_NkZPdvDE9vbr16D9hxKSSq7E4lW9z19mYv20VrOop8cMvat8axqrNv3ed3HWPyk_fRJhAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Adding Distinct Congruence Classes</title><source>Cambridge University Press Journals Complete</source><creator>HAMIDOUNE, Y. O.</creator><creatorcontrib>HAMIDOUNE, Y. O.</creatorcontrib><description>Let S be a generating subset of a cyclic group
G such that 0=∉S and
[mid ]S[mid ][ges ]5. We show
that the number of sums of the subsets of S is at
least min([mid ]G[mid ], 2[mid ]S[mid ]).
Our bound is best possible. We obtain similar results for
abelian groups and mention the generalization to
nonabelian groups.</description><identifier>ISSN: 0963-5483</identifier><identifier>EISSN: 1469-2163</identifier><identifier>DOI: 10.1017/S0963548397003180</identifier><language>eng</language><publisher>Cambridge University Press</publisher><ispartof>Combinatorics, probability & computing, 1998-03, Vol.7 (1), p.81-87</ispartof><rights>1998 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-2c32aab455bcff5429e51c2b2d73bb4d13d1e1414631d6d84647e8538ffa8463</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0963548397003180/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>HAMIDOUNE, Y. O.</creatorcontrib><title>Adding Distinct Congruence Classes</title><title>Combinatorics, probability & computing</title><addtitle>Combinator. Probab. Comp</addtitle><description>Let S be a generating subset of a cyclic group
G such that 0=∉S and
[mid ]S[mid ][ges ]5. We show
that the number of sums of the subsets of S is at
least min([mid ]G[mid ], 2[mid ]S[mid ]).
Our bound is best possible. We obtain similar results for
abelian groups and mention the generalization to
nonabelian groups.</description><issn>0963-5483</issn><issn>1469-2163</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNp9T01Lw0AUXETBWP0B3oL36L79TI4ltVWoqFiKt2WT3Q2pbSK7Kei_d0OLF8HT8JiZNzMIXQO-BQzy7g0XgnKW00JiTCHHJygBJoqMgKCnKBnpbOTP0UUIG4wx5wIn6GZqTNs16awNQ9vVQ1r2XeP3tqttWm51CDZcojOnt8FeHXGCVvP7VfmQLZ8Xj-V0mdWU8CEjEbSuGOdV7RxnpLAcalIRI2lVMQPUgAUWS1EwwuRMMGlzTnPndDzoBMHhbe37ELx16tO3O-2_FWA1blR_NkZPdvDE9vbr16D9hxKSSq7E4lW9z19mYv20VrOop8cMvat8axqrNv3ed3HWPyk_fRJhAA</recordid><startdate>19980301</startdate><enddate>19980301</enddate><creator>HAMIDOUNE, Y. O.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19980301</creationdate><title>Adding Distinct Congruence Classes</title><author>HAMIDOUNE, Y. O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-2c32aab455bcff5429e51c2b2d73bb4d13d1e1414631d6d84647e8538ffa8463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HAMIDOUNE, Y. O.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Combinatorics, probability & computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HAMIDOUNE, Y. O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adding Distinct Congruence Classes</atitle><jtitle>Combinatorics, probability & computing</jtitle><addtitle>Combinator. Probab. Comp</addtitle><date>1998-03-01</date><risdate>1998</risdate><volume>7</volume><issue>1</issue><spage>81</spage><epage>87</epage><pages>81-87</pages><issn>0963-5483</issn><eissn>1469-2163</eissn><abstract>Let S be a generating subset of a cyclic group
G such that 0=∉S and
[mid ]S[mid ][ges ]5. We show
that the number of sums of the subsets of S is at
least min([mid ]G[mid ], 2[mid ]S[mid ]).
Our bound is best possible. We obtain similar results for
abelian groups and mention the generalization to
nonabelian groups.</abstract><pub>Cambridge University Press</pub><doi>10.1017/S0963548397003180</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0963-5483 |
ispartof | Combinatorics, probability & computing, 1998-03, Vol.7 (1), p.81-87 |
issn | 0963-5483 1469-2163 |
language | eng |
recordid | cdi_crossref_primary_10_1017_S0963548397003180 |
source | Cambridge University Press Journals Complete |
title | Adding Distinct Congruence Classes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A31%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adding%20Distinct%20Congruence%20Classes&rft.jtitle=Combinatorics,%20probability%20&%20computing&rft.au=HAMIDOUNE,%20Y.%20O.&rft.date=1998-03-01&rft.volume=7&rft.issue=1&rft.spage=81&rft.epage=87&rft.pages=81-87&rft.issn=0963-5483&rft.eissn=1469-2163&rft_id=info:doi/10.1017/S0963548397003180&rft_dat=%3Ccambridge_cross%3E10_1017_S0963548397003180%3C/cambridge_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1017_S0963548397003180&rfr_iscdi=true |