Adding Distinct Congruence Classes
Let S be a generating subset of a cyclic group G such that 0=∉S and [mid ]S[mid ][ges ]5. We show that the number of sums of the subsets of S is at least min([mid ]G[mid ], 2[mid ]S[mid ]). Our bound is best possible. We obtain similar results for abelian groups and mention the generalization to non...
Gespeichert in:
Veröffentlicht in: | Combinatorics, probability & computing probability & computing, 1998-03, Vol.7 (1), p.81-87 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let S be a generating subset of a cyclic group
G such that 0=∉S and
[mid ]S[mid ][ges ]5. We show
that the number of sums of the subsets of S is at
least min([mid ]G[mid ], 2[mid ]S[mid ]).
Our bound is best possible. We obtain similar results for
abelian groups and mention the generalization to
nonabelian groups. |
---|---|
ISSN: | 0963-5483 1469-2163 |
DOI: | 10.1017/S0963548397003180 |