Adding Distinct Congruence Classes

Let S be a generating subset of a cyclic group G such that 0=∉S and [mid ]S[mid ][ges ]5. We show that the number of sums of the subsets of S is at least min([mid ]G[mid ], 2[mid ]S[mid ]). Our bound is best possible. We obtain similar results for abelian groups and mention the generalization to non...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combinatorics, probability & computing probability & computing, 1998-03, Vol.7 (1), p.81-87
1. Verfasser: HAMIDOUNE, Y. O.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let S be a generating subset of a cyclic group G such that 0=∉S and [mid ]S[mid ][ges ]5. We show that the number of sums of the subsets of S is at least min([mid ]G[mid ], 2[mid ]S[mid ]). Our bound is best possible. We obtain similar results for abelian groups and mention the generalization to nonabelian groups.
ISSN:0963-5483
1469-2163
DOI:10.1017/S0963548397003180