Radial basis functions

Radial basis function methods are modern ways to approximate multivariate functions, especially in the absence of grid data. They have been known, tested and analysed for several years now and many positive properties have been identified. This paper gives a selective but up-to-date survey of severa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta numerica 2000-01, Vol.9, p.1-38
1. Verfasser: Buhmann, M. D.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 38
container_issue
container_start_page 1
container_title Acta numerica
container_volume 9
creator Buhmann, M. D.
description Radial basis function methods are modern ways to approximate multivariate functions, especially in the absence of grid data. They have been known, tested and analysed for several years now and many positive properties have been identified. This paper gives a selective but up-to-date survey of several recent developments that explains their usefulness from the theoretical point of view and contributes useful new classes of radial basis function. We consider particularly the new results on convergence rates of interpolation with radial basis functions, as well as some of the various achievements on approximation on spheres, and the efficient numerical computation of interpolants for very large sets of data. Several examples of useful applications are stated at the end of the paper.
doi_str_mv 10.1017/S0962492900000015
format Article
fullrecord <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S0962492900000015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0962492900000015</cupid><sourcerecordid>10_1017_S0962492900000015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-935ab464df0362a229c012311c1fcc58b2deba26556dd7f7cde2c6abc2ec13aa3</originalsourceid><addsrcrecordid>eNp9j8tKAzEUhoMoOFa3gru-QDSXSdJZStWqFMRaKbgJJzdJbWckmUJ9e2dscSN4Nmfx3_gQuqDkkhKqrl5IJVlZsYr8HBUHqKClKjERZHSIil7GvX6MTnJedg6mSlmg8xm4CKuhgRzzMGxq28amzqfoKMAq-7P9H6DXu9v5-B5PnyYP4-sptlzIFldcgCll6QLhkgFjle2KOaWWBmvFyDDnDTAphHROBWWdZ1aCscxbygH4ANFdr01NzskH_ZniGtKXpkT3YPoPWJfBu0zMrd_-BiB9aKm4ElpOnvXNYjYn4vFNLzo_32_A2qTo3r1eNptUd1z_rHwD3GRdrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Radial basis functions</title><source>Cambridge Journals</source><creator>Buhmann, M. D.</creator><creatorcontrib>Buhmann, M. D.</creatorcontrib><description>Radial basis function methods are modern ways to approximate multivariate functions, especially in the absence of grid data. They have been known, tested and analysed for several years now and many positive properties have been identified. This paper gives a selective but up-to-date survey of several recent developments that explains their usefulness from the theoretical point of view and contributes useful new classes of radial basis function. We consider particularly the new results on convergence rates of interpolation with radial basis functions, as well as some of the various achievements on approximation on spheres, and the efficient numerical computation of interpolants for very large sets of data. Several examples of useful applications are stated at the end of the paper.</description><identifier>ISSN: 0962-4929</identifier><identifier>EISSN: 1474-0508</identifier><identifier>DOI: 10.1017/S0962492900000015</identifier><language>eng</language><publisher>Cambridge University Press</publisher><ispartof>Acta numerica, 2000-01, Vol.9, p.1-38</ispartof><rights>Cambridge University Press 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-935ab464df0362a229c012311c1fcc58b2deba26556dd7f7cde2c6abc2ec13aa3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0962492900000015/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27903,27904,55606</link.rule.ids></links><search><creatorcontrib>Buhmann, M. D.</creatorcontrib><title>Radial basis functions</title><title>Acta numerica</title><addtitle>Acta Numerica</addtitle><description>Radial basis function methods are modern ways to approximate multivariate functions, especially in the absence of grid data. They have been known, tested and analysed for several years now and many positive properties have been identified. This paper gives a selective but up-to-date survey of several recent developments that explains their usefulness from the theoretical point of view and contributes useful new classes of radial basis function. We consider particularly the new results on convergence rates of interpolation with radial basis functions, as well as some of the various achievements on approximation on spheres, and the efficient numerical computation of interpolants for very large sets of data. Several examples of useful applications are stated at the end of the paper.</description><issn>0962-4929</issn><issn>1474-0508</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNp9j8tKAzEUhoMoOFa3gru-QDSXSdJZStWqFMRaKbgJJzdJbWckmUJ9e2dscSN4Nmfx3_gQuqDkkhKqrl5IJVlZsYr8HBUHqKClKjERZHSIil7GvX6MTnJedg6mSlmg8xm4CKuhgRzzMGxq28amzqfoKMAq-7P9H6DXu9v5-B5PnyYP4-sptlzIFldcgCll6QLhkgFjle2KOaWWBmvFyDDnDTAphHROBWWdZ1aCscxbygH4ANFdr01NzskH_ZniGtKXpkT3YPoPWJfBu0zMrd_-BiB9aKm4ElpOnvXNYjYn4vFNLzo_32_A2qTo3r1eNptUd1z_rHwD3GRdrg</recordid><startdate>200001</startdate><enddate>200001</enddate><creator>Buhmann, M. D.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200001</creationdate><title>Radial basis functions</title><author>Buhmann, M. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-935ab464df0362a229c012311c1fcc58b2deba26556dd7f7cde2c6abc2ec13aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buhmann, M. D.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Acta numerica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buhmann, M. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radial basis functions</atitle><jtitle>Acta numerica</jtitle><addtitle>Acta Numerica</addtitle><date>2000-01</date><risdate>2000</risdate><volume>9</volume><spage>1</spage><epage>38</epage><pages>1-38</pages><issn>0962-4929</issn><eissn>1474-0508</eissn><abstract>Radial basis function methods are modern ways to approximate multivariate functions, especially in the absence of grid data. They have been known, tested and analysed for several years now and many positive properties have been identified. This paper gives a selective but up-to-date survey of several recent developments that explains their usefulness from the theoretical point of view and contributes useful new classes of radial basis function. We consider particularly the new results on convergence rates of interpolation with radial basis functions, as well as some of the various achievements on approximation on spheres, and the efficient numerical computation of interpolants for very large sets of data. Several examples of useful applications are stated at the end of the paper.</abstract><pub>Cambridge University Press</pub><doi>10.1017/S0962492900000015</doi><tpages>38</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0962-4929
ispartof Acta numerica, 2000-01, Vol.9, p.1-38
issn 0962-4929
1474-0508
language eng
recordid cdi_crossref_primary_10_1017_S0962492900000015
source Cambridge Journals
title Radial basis functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T05%3A09%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radial%20basis%20functions&rft.jtitle=Acta%20numerica&rft.au=Buhmann,%20M.%20D.&rft.date=2000-01&rft.volume=9&rft.spage=1&rft.epage=38&rft.pages=1-38&rft.issn=0962-4929&rft.eissn=1474-0508&rft_id=info:doi/10.1017/S0962492900000015&rft_dat=%3Ccambridge_cross%3E10_1017_S0962492900000015%3C/cambridge_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1017_S0962492900000015&rfr_iscdi=true