Radial basis functions

Radial basis function methods are modern ways to approximate multivariate functions, especially in the absence of grid data. They have been known, tested and analysed for several years now and many positive properties have been identified. This paper gives a selective but up-to-date survey of severa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta numerica 2000-01, Vol.9, p.1-38
1. Verfasser: Buhmann, M. D.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Radial basis function methods are modern ways to approximate multivariate functions, especially in the absence of grid data. They have been known, tested and analysed for several years now and many positive properties have been identified. This paper gives a selective but up-to-date survey of several recent developments that explains their usefulness from the theoretical point of view and contributes useful new classes of radial basis function. We consider particularly the new results on convergence rates of interpolation with radial basis functions, as well as some of the various achievements on approximation on spheres, and the efficient numerical computation of interpolants for very large sets of data. Several examples of useful applications are stated at the end of the paper.
ISSN:0962-4929
1474-0508
DOI:10.1017/S0962492900000015