Friedlander-Keller ray expansions in electromagnetism: Monochromatic radiation from arbitrary surfaces in three dimensions
The standard approach to applying ray theory to solving Maxwell’s equations in the large wave-number limit involves seeking solutions that have ( i ) an oscillatory exponential with a phase term that is linear in the wave-number and ( ii ) has an amplitude profile expressed in terms of inverse power...
Gespeichert in:
Veröffentlicht in: | European journal of applied mathematics 2023-12, Vol.34 (6), p.1187-1208 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The standard approach to applying ray theory to solving Maxwell’s equations in the large wave-number limit involves seeking solutions that have (
i
) an oscillatory exponential with a phase term that is linear in the wave-number and (
ii
) has an amplitude profile expressed in terms of inverse powers of that wave-number. The Friedlander–Keller modification includes an additional power of this wave-number in the phase of the wave structure, and this additional term is crucial when analysing certain wave phenomena such as creeping and whispering gallery wave propagation. However, other wave phenomena necessitate a generalisation of this theory. The purposes of this paper are to provide a ‘generalised’ Friedlander–Keller ray ansatz for Maxwell’s equations to obtain a new set of field equations for the various phase terms and amplitude of the wave structure; these are then solved subject to boundary data conforming to wave-fronts that are either specified or general. These examples specifically require this generalisation as they are not amenable to classic ray theory. |
---|---|
ISSN: | 0956-7925 1469-4425 |
DOI: | 10.1017/S0956792522000249 |