The influence of conventional and compost fertilization on phosphorus use efficiency by broccoli in a phosphorus deficient soil

Phosphorus (P) accumulation and use efficiency by broccoli (Brassica oleraceae var. italica) were observed in a field plot study comparing management with varying levels of conventional fertilizer, differing composted amendments, and a combination of inorganic Nitrogen (N) and compost sources. Total...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of alternative agriculture 1990-03, Vol.5 (1), p.38-46
Hauptverfasser: Buchanan, Marc A., Gliessman, Stephen R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Phosphorus (P) accumulation and use efficiency by broccoli (Brassica oleraceae var. italica) were observed in a field plot study comparing management with varying levels of conventional fertilizer, differing composted amendments, and a combination of inorganic Nitrogen (N) and compost sources. Total P accumulation and yield were highest in treatments incorporating solely compost or vermicompost applications of 30 tons ha–1. Applications of N as ammonium sulfate caused significant soil acidification, which lowered yield and P uptake. Poor growth and yield were probably related to manganese toxicity effects on root extension and activity. These effects were partly ameliorated in treatments combining fertilizer N and compost sources. As a result, yield in plots receiving 75 kg N ha–1 as ammonium sulfate and 8.9 kg P ha–1 as compost was nearly identical to highest experimental yields. Phosphorus use efficiency was highest in this treatment incorporating fertilizer N and compost. Generally, P use efficiency tended to decline at the highest levels of fertilization. We propose that intensive organic matter management may be a good way to improve P use efficiency by vegetable crops.
ISSN:0889-1893
1478-5498
DOI:10.1017/S0889189300003210