Non-classical Riemann solvers with nucleation
We introduce a new non-classical Riemann solver for scalar conservation laws with concave–convex flux-function. This solver is based on both a kinetic relation, which determines the propagation speed of (under-compressive) non-classical shock waves, and a nucleation criterion, which makes a choice b...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 2004-10, Vol.134 (5), p.961-984 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce a new non-classical Riemann solver for scalar conservation laws with concave–convex flux-function. This solver is based on both a kinetic relation, which determines the propagation speed of (under-compressive) non-classical shock waves, and a nucleation criterion, which makes a choice between a classical Riemann solution and a non-classical one. We establish the existence of (non-classical entropy) solutions of the Cauchy problem and discuss several examples of wave interactions. We also show the existence of a class of solutions, called splitting–merging solutions, which are made of two large shocks and small bounded-variation perturbations. The nucleation solvers, as we call them, are applied to (and actually motivated by) the theory of thin-film flows; they help explain numerical results observed for such flows. |
---|---|
ISSN: | 0308-2105 1473-7124 |
DOI: | 10.1017/S0308210500003577 |