Characteristic varieties of arrangements
The kth Fitting ideal of the Alexander invariant B of an arrangement [Ascr ] of n complex hyperplanes defines a characteristic subvariety, Vk([Ascr ]), of the algebraic torus ([Copf ]*)n. In the combinatorially determined case where B decomposes as a direct sum of local Alexander invariants, we obta...
Gespeichert in:
Veröffentlicht in: | Mathematical proceedings of the Cambridge Philosophical Society 1999-07, Vol.127 (1), p.33-53 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The kth Fitting ideal of the Alexander invariant
B of an arrangement [Ascr ] of n complex hyperplanes defines a
characteristic subvariety, Vk([Ascr ]), of the algebraic torus
([Copf ]*)n. In the combinatorially determined case
where B decomposes as a direct sum
of local Alexander invariants, we obtain a complete description of
Vk([Ascr ]). For any
arrangement [Ascr ], we show that the tangent cone at the identity of this variety coincides
with [Rscr ]1k(A), one of the cohomology
support loci of the Orlik–Solomon algebra.
Using work of Arapura [1], we conclude that all irreducible
components of Vk([Ascr ]) which pass through the identity
element of ([Copf ]*)n are combinatorially determined,
and that [Rscr ]1k(A) is the union of a subspace
arrangement in [Copf ]n, thereby resolving a
conjecture of Falk [11]. We use these results to study the
reflection arrangements associated to monomial groups. |
---|---|
ISSN: | 0305-0041 1469-8064 |
DOI: | 10.1017/S0305004199003576 |