On the asymptotics of meromorphic solutions for nonlinear Riemann–Hilbert problems
This paper is devoted to a global existence theorem of meromorphic solutions of the form Z(z)=Zo(z)+R(z) of a nonlinear Riemann–Hilbert problem (RHP) for multiply connected domains Gq(q[ges ]1), where Zo(z) is the singular part of the solution, R(z) is the regular part which is a holomorphic solutio...
Gespeichert in:
Veröffentlicht in: | Mathematical proceedings of the Cambridge Philosophical Society 1999-07, Vol.127 (1), p.159-172 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper is devoted to a global existence theorem of meromorphic solutions of
the form Z(z)=Zo(z)+R(z)
of a nonlinear Riemann–Hilbert problem (RHP) for
multiply connected domains Gq(q[ges ]1),
where Zo(z) is the singular part of the
solution, R(z) is the regular part which is a holomorphic
solution of some appropriate
nonlinear RHP for Gq(q[ges ]1).
Under appropriate conditions on the characteristics of
both the singular part Zo(z) (number of poles)
and regular part (winding number) we
prove the existence of meromorphic solutions Z(z) of the form
Z(z)=Zo(z)+R(z). The
proof is based on a special construction of the singular part
Zo(z) and an adequate
formulation of Newton's method for the regular part R(z). |
---|---|
ISSN: | 0305-0041 1469-8064 |
DOI: | 10.1017/S0305004199003539 |