Lacunarity and the Bohr topology

If G is an abelian group, then G# denotes G equipped with the weakest topology that makes every character of G continuous. This is the Bohr topology of G. If G=ℤ, the additive group of the integers and A is a Hadamard set in ℤ, it is shown that: (i) A−A has 0 as its only limit point in ℤ#; (ii) no S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical proceedings of the Cambridge Philosophical Society 1999-01, Vol.126 (1), p.117-137, Article S030500419800317X
Hauptverfasser: KUNEN, KENNETH, RUDIN, WALTER
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:If G is an abelian group, then G# denotes G equipped with the weakest topology that makes every character of G continuous. This is the Bohr topology of G. If G=ℤ, the additive group of the integers and A is a Hadamard set in ℤ, it is shown that: (i) A−A has 0 as its only limit point in ℤ#; (ii) no Sidon subset of A−A has a limit point in ℤ#; (iii) A−A is a Λ(p) set for all p
ISSN:0305-0041
1469-8064
DOI:10.1017/S030500419800317X