Equivalent norms on Banach Jordan algebras

1. Introduction. Recently Kaplansky suggested the definition of a suitable Jordan analogue of B*-algebras, which we call J B*-algebras (see (10) and (11)). In this article, we give a characterization of those complex unital Banach Jordan algebras which are J B*-algebras in an equivalent norm. This i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical proceedings of the Cambridge Philosophical Society 1979-09, Vol.86 (2), p.261-270
1. Verfasser: Youngson, M. A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:1. Introduction. Recently Kaplansky suggested the definition of a suitable Jordan analogue of B*-algebras, which we call J B*-algebras (see (10) and (11)). In this article, we give a characterization of those complex unital Banach Jordan algebras which are J B*-algebras in an equivalent norm. This is done by generalizing results of Bonsall ((3) and (4)) to give necessary and sufficient conditions on a real unital Banach Jordan algebra under which it is the self-adjoint part of a J B*-algebra in an equivalent norm. As a corollary we also obtain a characterization of the cones in a Banach Jordan algebra which are the set of positive elements of a J B*-algebra.
ISSN:0305-0041
1469-8064
DOI:10.1017/S0305004100056085