Eleven million years of arc volcanism at the Aucanquilcha Volcanic Cluster, northern Chilean Andes: implications for the life span and emplacement of plutons

The arid climate of the Altiplano has preserved a volcanic history of ∼11 million years at the Aucanquilcha Volcanic Cluster (AVC), northern Chile, which is built on thick continental crust. The AVC has a systematic temporal, spatial, compositional and mineralogical development shared by other long-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the Royal Society of Edinburgh 2006-01, Vol.97 (4), p.415-436
Hauptverfasser: Grunder, Anita L., Klemetti, Erik W., Feeley, Todd C., McKee, Claire M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The arid climate of the Altiplano has preserved a volcanic history of ∼11 million years at the Aucanquilcha Volcanic Cluster (AVC), northern Chile, which is built on thick continental crust. The AVC has a systematic temporal, spatial, compositional and mineralogical development shared by other long-lived volcanic complexes, indicating a common pattern in continental magmatism with implications for the development of underlying plutonic complexes, that in turn create batholiths. The AVC is a ∼700-km2, Tertiary to Recent cluster of at least 19 volcanoes that have erupted andesite and dacite lavas (∼55 to 68 wt.% SiO2) and a small ash-flow tuff, totalling 327 ± 20 km3. Forty 40Ar/39Ar ages for the AVC range from 10.97 ± 0.35 to 0.24 ± 0.05 Ma and define three major 1-5 to 3 million-year pulses of volcanism followed by the present pulse expressed as Volcán Aucanquilcha. The first stage of activity (∼ll-8 Ma, Alconcha Group) produced seven volcanoes and the 2-km3 Ujina ignimbrite and is a crudely bimodal suite of pyroxene andesite and dacite. After a possible two million year hiatus, the second stage of volcanism (∼ 6-4 Ma, Gordo Group) produced at least five volcanoes ranging from pyroxene andesite to dacite. The third stage (∼4-2 Ma, Polan Group) represents a voluminous pulse of activity, with eruption of at least another five volcanoes, broadly distributed in the centre of the AVC, and composed dominantly of biotite amphibole dacite; andesites at this stage occur as magmatic inclusions. The most recent activity ( 1 Ma to recent) is in the centre of the AVC at Volcán Aucanquilcha, a potentially active composite volcano made of biotite-amphibole dacite with andesite and dacite magmatic inclusions. These successive eruptive groups describe (1) a spatial pattern of volcanism from peripheral to central, (2) a corresponding change from compositionally diverse andesite-dacite volcanism to compositionally increasingly restricted and increasingly silicic dacite, (3) a change from early anhydrous mafic silicate assemblages (pyroxene dominant) to later biotite amphibole dacite, (4) an abrupt increase in eruption rate; and (5) the onset of pervasive hydrothermal alteration. The evolutionary succession of the 327-km3 AVC is similar to other long-lived intermediate volcanic complexes of very different volumes, e.g., eastern Nevada (thousands of km3, Gans et al. 1989; Grander 1995), Yanacocha, Perú (tens of km3, Longo 2005), and the San Juan Volcanic System (tens of thousa
ISSN:0263-5933
0080-4568
1473-7116
2161-7953
DOI:10.1017/S0263593300001541