Does the fossil record of spiders track that of their principal prey, the insects?

The currently accepted cladogram of spider phylogeny and palaeontological data are used to evaluate spider family richness through geological time. A significantly more diverse spider fossil record is predicted than observed. The predicted rate of spider family diversification is considered more acc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the Royal Society of Edinburgh. Earth Sciences 2004-01, Vol.94 (3), p.275-281
1. Verfasser: Penney, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The currently accepted cladogram of spider phylogeny and palaeontological data are used to evaluate spider family richness through geological time. A significantly more diverse spider fossil record is predicted than observed. The predicted rate of spider family diversification is considered more accurate because of its close similarity at 0 Ma to the number of extant families. Predicted spider family palaeodiversity is compared with insect family palaeodiversity to investigate whether spiders track insects through geological time. At the family level, the insects, and observed and predicted spider fossil records show an exponential increase over time, the pattern typical of a radiating group. No significant differences are observed in the rates of change in the slopes, and hence rate of diversification of spiders and insects over time. This suggests that spiders probably co-radiated alongside the insects, with the major radiations of both groups occurring at least 100 Ma before the origin of angiosperms.
ISSN:0263-5933
1473-7116
DOI:10.1017/S0263593300000675