Snow depths and grain-size relationships with relevance for passive microwave studies
The application of passive microwave radiometry to the remote sensing of snow properties is based on the ratio of emitted to scattered portions of the upwelling radiation. Increased scattering is indicative of increased snow amount, i.e. the number of snow grains present. However, scattering is also...
Gespeichert in:
Veröffentlicht in: | Annals of glaciology 1993, Vol.17, p.171-176 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The application of passive microwave radiometry to the remote sensing of snow properties is based on the ratio of emitted to scattered portions of the upwelling radiation. Increased scattering is indicative of increased snow amount, i.e. the number of snow grains present. However, scattering is also directly proportional to snow grain-size for a given snow amount. Current snow cover retrieval algorithms produce inaccurate results when snow grain-sizes are unusually large. Therefore, it is necessary to characterize snow grain-size on a regional scale (and perhaps local scale in extreme situations) in order to adjust passive microwave algorithms. Preliminary analysis indicates that: (1) algorithms are not as sensitive to the presence of large grain-sizes as the initial theory had indicated; (2) standard deviation of grain-size diameters throughout the total snow cover may often be less than 0.5 mm, thus average grain-size data may often serve to characterize the detailed stratigraphy of the total snow cover; (3) conditions in subfreezing snow which produce grain-sizes that greatly exceed a mean diameter value of 1–2 mm result from snow cover/climate relationships which can be modelled/monitored on a regional scale. A preliminary method is investigated for selecting snow retrieval algorithms according to prevailing regional-scale grain-size. |
---|---|
ISSN: | 0260-3055 1727-5644 |
DOI: | 10.1017/S0260305500012799 |