Population of Excited States of Al 10+ in a Plasma by a Time-Dependent Model
The present model is the time-dependent version of a previous model (Sureau et al. 1983) in which the population distribution was assumed in steady state. A finite set of levels is partitioned in four subsets: the Z-ion ground-level and, contingently, the first near-degenerated levels (subset 1); al...
Gespeichert in:
Veröffentlicht in: | International Astronomical Union Colloquium 1984, Vol.86, p.221-224 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The present model is the time-dependent version of a previous model (Sureau et al. 1983) in which the population distribution was assumed in steady state. A finite set of levels is partitioned in four subsets: the Z-ion ground-level and, contingently, the first near-degenerated levels (subset 1); all the successive excited Z-ion levels up to n=5 (subset 2); a finite number of higher Rydberg levels (because of the limitation of the series in the plasmas) which are assumed in LTE with the Z+l−ion ground-level (subset 3, called the thermal band); and the Z+l ion ground-level (subset 4).
The physical processes explicitly considered are the radiative cascades and the transitions between the Z-ion bound levels induced by electron-ion collisions. The radiative-transition probabilities are given by ab-initio calculations using a modified Hartree-Fock method including the spin-orbit interaction (Sureau et al., 1984). The collision rates are derived by the Van Regemorter formula multiplied by an adjustable parameter F
c
. |
---|---|
ISSN: | 0252-9211 |
DOI: | 10.1017/S0252921100085791 |