Sur un critère de récurrence en dimension 2 pour les marches stationnaires, applications
Let $(E,{\cal A},\mu,T)$ be a dynamical system and let $\Phi$ be a function defined on $E$ with values in $\mathbb{R}^2$. We give a criterion, the central limit theorem along subsequences of positive density, for the recurrence of the corresponding ‘stationary walk’ defined as the cocycle $\big(\sum...
Gespeichert in:
Veröffentlicht in: | Ergodic theory and dynamical systems 1999-10, Vol.19 (5), p.1233-1245 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1245 |
---|---|
container_issue | 5 |
container_start_page | 1233 |
container_title | Ergodic theory and dynamical systems |
container_volume | 19 |
creator | CONZE, J.-P. |
description | Let $(E,{\cal A},\mu,T)$ be a dynamical system and let $\Phi$ be a function defined on $E$ with values in $\mathbb{R}^2$. We give a criterion, the central limit theorem along subsequences of positive density, for the recurrence of the corresponding ‘stationary walk’ defined as the cocycle $\big(\sum^{n-1}_{j=0}\Phi(T^jx)\big)_{n\geq1}$. This criterion is satisfied by functions which are homologous to a martingale difference (a property which holds for regular functions in many systems). It can also be applied to the periodic Lorentz gas in the plane and shows recurrence for this model. |
doi_str_mv | 10.1017/S0143385799141701 |
format | Article |
fullrecord | <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S0143385799141701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0143385799141701</cupid><sourcerecordid>10_1017_S0143385799141701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1720-4f7e4a70bacc86bd7427b8960ac4a87f8a454023bad6a7cb5a57fc88b0653e8c3</originalsourceid><addsrcrecordid>eNp9UNtKAzEQDaJgrX6Ab_kAV5NNNsk-StFWKIrUG76ESTarqe12Sbagf6Tf0R8ztcUXwadh5pwzZ-YgdEzJKSVUnk0I5YypQpYl5VQSuoN6lIsy46nbRb01nK3xfXQQ45QQwqgseuh5sgx42WAbfLf6DA5XDofVl12G4BrrsGtw5eeuiX7R4By3i0SfuYjnEOxrqrGDLkEN-ODiCYa2nXn7M4qHaK-GWXRH29pH95cXd4NRNr4ZXg3Ox5mlMicZr6XjIIkBa5UwleS5NKoUBCwHJWsFvOAkZwYqAdKaAgpZW6UMEQVzyrI-opu9NixiDK7WbfDpvg9NiV6Ho_-EkzTZRuNj595_BRDetJBMFloMbzV9Gg2vH_ijJonPth4wN8FXL05PUxRN-usfl2_DFHf7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sur un critère de récurrence en dimension 2 pour les marches stationnaires, applications</title><source>Cambridge University Press Journals Complete</source><creator>CONZE, J.-P.</creator><creatorcontrib>CONZE, J.-P.</creatorcontrib><description>Let $(E,{\cal A},\mu,T)$ be a dynamical system and let $\Phi$ be a function defined on $E$ with values in $\mathbb{R}^2$. We give a criterion, the central limit theorem along subsequences of positive density, for the recurrence of the corresponding ‘stationary walk’ defined as the cocycle $\big(\sum^{n-1}_{j=0}\Phi(T^jx)\big)_{n\geq1}$. This criterion is satisfied by functions which are homologous to a martingale difference (a property which holds for regular functions in many systems). It can also be applied to the periodic Lorentz gas in the plane and shows recurrence for this model.</description><identifier>ISSN: 0143-3857</identifier><identifier>EISSN: 1469-4417</identifier><identifier>DOI: 10.1017/S0143385799141701</identifier><language>eng</language><publisher>Cambridge University Press</publisher><ispartof>Ergodic theory and dynamical systems, 1999-10, Vol.19 (5), p.1233-1245</ispartof><rights>1999 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1720-4f7e4a70bacc86bd7427b8960ac4a87f8a454023bad6a7cb5a57fc88b0653e8c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0143385799141701/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,777,781,27905,27906,55609</link.rule.ids></links><search><creatorcontrib>CONZE, J.-P.</creatorcontrib><title>Sur un critère de récurrence en dimension 2 pour les marches stationnaires, applications</title><title>Ergodic theory and dynamical systems</title><addtitle>Ergod. Th. Dynam. Sys</addtitle><description>Let $(E,{\cal A},\mu,T)$ be a dynamical system and let $\Phi$ be a function defined on $E$ with values in $\mathbb{R}^2$. We give a criterion, the central limit theorem along subsequences of positive density, for the recurrence of the corresponding ‘stationary walk’ defined as the cocycle $\big(\sum^{n-1}_{j=0}\Phi(T^jx)\big)_{n\geq1}$. This criterion is satisfied by functions which are homologous to a martingale difference (a property which holds for regular functions in many systems). It can also be applied to the periodic Lorentz gas in the plane and shows recurrence for this model.</description><issn>0143-3857</issn><issn>1469-4417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNp9UNtKAzEQDaJgrX6Ab_kAV5NNNsk-StFWKIrUG76ESTarqe12Sbagf6Tf0R8ztcUXwadh5pwzZ-YgdEzJKSVUnk0I5YypQpYl5VQSuoN6lIsy46nbRb01nK3xfXQQ45QQwqgseuh5sgx42WAbfLf6DA5XDofVl12G4BrrsGtw5eeuiX7R4By3i0SfuYjnEOxrqrGDLkEN-ODiCYa2nXn7M4qHaK-GWXRH29pH95cXd4NRNr4ZXg3Ox5mlMicZr6XjIIkBa5UwleS5NKoUBCwHJWsFvOAkZwYqAdKaAgpZW6UMEQVzyrI-opu9NixiDK7WbfDpvg9NiV6Ho_-EkzTZRuNj595_BRDetJBMFloMbzV9Gg2vH_ijJonPth4wN8FXL05PUxRN-usfl2_DFHf7</recordid><startdate>199910</startdate><enddate>199910</enddate><creator>CONZE, J.-P.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199910</creationdate><title>Sur un critère de récurrence en dimension 2 pour les marches stationnaires, applications</title><author>CONZE, J.-P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1720-4f7e4a70bacc86bd7427b8960ac4a87f8a454023bad6a7cb5a57fc88b0653e8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CONZE, J.-P.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Ergodic theory and dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CONZE, J.-P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sur un critère de récurrence en dimension 2 pour les marches stationnaires, applications</atitle><jtitle>Ergodic theory and dynamical systems</jtitle><addtitle>Ergod. Th. Dynam. Sys</addtitle><date>1999-10</date><risdate>1999</risdate><volume>19</volume><issue>5</issue><spage>1233</spage><epage>1245</epage><pages>1233-1245</pages><issn>0143-3857</issn><eissn>1469-4417</eissn><abstract>Let $(E,{\cal A},\mu,T)$ be a dynamical system and let $\Phi$ be a function defined on $E$ with values in $\mathbb{R}^2$. We give a criterion, the central limit theorem along subsequences of positive density, for the recurrence of the corresponding ‘stationary walk’ defined as the cocycle $\big(\sum^{n-1}_{j=0}\Phi(T^jx)\big)_{n\geq1}$. This criterion is satisfied by functions which are homologous to a martingale difference (a property which holds for regular functions in many systems). It can also be applied to the periodic Lorentz gas in the plane and shows recurrence for this model.</abstract><pub>Cambridge University Press</pub><doi>10.1017/S0143385799141701</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-3857 |
ispartof | Ergodic theory and dynamical systems, 1999-10, Vol.19 (5), p.1233-1245 |
issn | 0143-3857 1469-4417 |
language | eng |
recordid | cdi_crossref_primary_10_1017_S0143385799141701 |
source | Cambridge University Press Journals Complete |
title | Sur un critère de récurrence en dimension 2 pour les marches stationnaires, applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T21%3A38%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sur%20un%20crit%C3%A8re%20de%20r%C3%A9currence%20en%20dimension%202%20pour%20les%20marches%20stationnaires,%20applications&rft.jtitle=Ergodic%20theory%20and%20dynamical%20systems&rft.au=CONZE,%20J.-P.&rft.date=1999-10&rft.volume=19&rft.issue=5&rft.spage=1233&rft.epage=1245&rft.pages=1233-1245&rft.issn=0143-3857&rft.eissn=1469-4417&rft_id=info:doi/10.1017/S0143385799141701&rft_dat=%3Ccambridge_cross%3E10_1017_S0143385799141701%3C/cambridge_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1017_S0143385799141701&rfr_iscdi=true |