Sur un critère de récurrence en dimension 2 pour les marches stationnaires, applications

Let $(E,{\cal A},\mu,T)$ be a dynamical system and let $\Phi$ be a function defined on $E$ with values in $\mathbb{R}^2$. We give a criterion, the central limit theorem along subsequences of positive density, for the recurrence of the corresponding ‘stationary walk’ defined as the cocycle $\big(\sum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 1999-10, Vol.19 (5), p.1233-1245
1. Verfasser: CONZE, J.-P.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1245
container_issue 5
container_start_page 1233
container_title Ergodic theory and dynamical systems
container_volume 19
creator CONZE, J.-P.
description Let $(E,{\cal A},\mu,T)$ be a dynamical system and let $\Phi$ be a function defined on $E$ with values in $\mathbb{R}^2$. We give a criterion, the central limit theorem along subsequences of positive density, for the recurrence of the corresponding ‘stationary walk’ defined as the cocycle $\big(\sum^{n-1}_{j=0}\Phi(T^jx)\big)_{n\geq1}$. This criterion is satisfied by functions which are homologous to a martingale difference (a property which holds for regular functions in many systems). It can also be applied to the periodic Lorentz gas in the plane and shows recurrence for this model.
doi_str_mv 10.1017/S0143385799141701
format Article
fullrecord <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S0143385799141701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0143385799141701</cupid><sourcerecordid>10_1017_S0143385799141701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1720-4f7e4a70bacc86bd7427b8960ac4a87f8a454023bad6a7cb5a57fc88b0653e8c3</originalsourceid><addsrcrecordid>eNp9UNtKAzEQDaJgrX6Ab_kAV5NNNsk-StFWKIrUG76ESTarqe12Sbagf6Tf0R8ztcUXwadh5pwzZ-YgdEzJKSVUnk0I5YypQpYl5VQSuoN6lIsy46nbRb01nK3xfXQQ45QQwqgseuh5sgx42WAbfLf6DA5XDofVl12G4BrrsGtw5eeuiX7R4By3i0SfuYjnEOxrqrGDLkEN-ODiCYa2nXn7M4qHaK-GWXRH29pH95cXd4NRNr4ZXg3Ox5mlMicZr6XjIIkBa5UwleS5NKoUBCwHJWsFvOAkZwYqAdKaAgpZW6UMEQVzyrI-opu9NixiDK7WbfDpvg9NiV6Ho_-EkzTZRuNj595_BRDetJBMFloMbzV9Gg2vH_ijJonPth4wN8FXL05PUxRN-usfl2_DFHf7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sur un critère de récurrence en dimension 2 pour les marches stationnaires, applications</title><source>Cambridge University Press Journals Complete</source><creator>CONZE, J.-P.</creator><creatorcontrib>CONZE, J.-P.</creatorcontrib><description>Let $(E,{\cal A},\mu,T)$ be a dynamical system and let $\Phi$ be a function defined on $E$ with values in $\mathbb{R}^2$. We give a criterion, the central limit theorem along subsequences of positive density, for the recurrence of the corresponding ‘stationary walk’ defined as the cocycle $\big(\sum^{n-1}_{j=0}\Phi(T^jx)\big)_{n\geq1}$. This criterion is satisfied by functions which are homologous to a martingale difference (a property which holds for regular functions in many systems). It can also be applied to the periodic Lorentz gas in the plane and shows recurrence for this model.</description><identifier>ISSN: 0143-3857</identifier><identifier>EISSN: 1469-4417</identifier><identifier>DOI: 10.1017/S0143385799141701</identifier><language>eng</language><publisher>Cambridge University Press</publisher><ispartof>Ergodic theory and dynamical systems, 1999-10, Vol.19 (5), p.1233-1245</ispartof><rights>1999 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1720-4f7e4a70bacc86bd7427b8960ac4a87f8a454023bad6a7cb5a57fc88b0653e8c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0143385799141701/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,777,781,27905,27906,55609</link.rule.ids></links><search><creatorcontrib>CONZE, J.-P.</creatorcontrib><title>Sur un critère de récurrence en dimension 2 pour les marches stationnaires, applications</title><title>Ergodic theory and dynamical systems</title><addtitle>Ergod. Th. Dynam. Sys</addtitle><description>Let $(E,{\cal A},\mu,T)$ be a dynamical system and let $\Phi$ be a function defined on $E$ with values in $\mathbb{R}^2$. We give a criterion, the central limit theorem along subsequences of positive density, for the recurrence of the corresponding ‘stationary walk’ defined as the cocycle $\big(\sum^{n-1}_{j=0}\Phi(T^jx)\big)_{n\geq1}$. This criterion is satisfied by functions which are homologous to a martingale difference (a property which holds for regular functions in many systems). It can also be applied to the periodic Lorentz gas in the plane and shows recurrence for this model.</description><issn>0143-3857</issn><issn>1469-4417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNp9UNtKAzEQDaJgrX6Ab_kAV5NNNsk-StFWKIrUG76ESTarqe12Sbagf6Tf0R8ztcUXwadh5pwzZ-YgdEzJKSVUnk0I5YypQpYl5VQSuoN6lIsy46nbRb01nK3xfXQQ45QQwqgseuh5sgx42WAbfLf6DA5XDofVl12G4BrrsGtw5eeuiX7R4By3i0SfuYjnEOxrqrGDLkEN-ODiCYa2nXn7M4qHaK-GWXRH29pH95cXd4NRNr4ZXg3Ox5mlMicZr6XjIIkBa5UwleS5NKoUBCwHJWsFvOAkZwYqAdKaAgpZW6UMEQVzyrI-opu9NixiDK7WbfDpvg9NiV6Ho_-EkzTZRuNj595_BRDetJBMFloMbzV9Gg2vH_ijJonPth4wN8FXL05PUxRN-usfl2_DFHf7</recordid><startdate>199910</startdate><enddate>199910</enddate><creator>CONZE, J.-P.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199910</creationdate><title>Sur un critère de récurrence en dimension 2 pour les marches stationnaires, applications</title><author>CONZE, J.-P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1720-4f7e4a70bacc86bd7427b8960ac4a87f8a454023bad6a7cb5a57fc88b0653e8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CONZE, J.-P.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Ergodic theory and dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CONZE, J.-P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sur un critère de récurrence en dimension 2 pour les marches stationnaires, applications</atitle><jtitle>Ergodic theory and dynamical systems</jtitle><addtitle>Ergod. Th. Dynam. Sys</addtitle><date>1999-10</date><risdate>1999</risdate><volume>19</volume><issue>5</issue><spage>1233</spage><epage>1245</epage><pages>1233-1245</pages><issn>0143-3857</issn><eissn>1469-4417</eissn><abstract>Let $(E,{\cal A},\mu,T)$ be a dynamical system and let $\Phi$ be a function defined on $E$ with values in $\mathbb{R}^2$. We give a criterion, the central limit theorem along subsequences of positive density, for the recurrence of the corresponding ‘stationary walk’ defined as the cocycle $\big(\sum^{n-1}_{j=0}\Phi(T^jx)\big)_{n\geq1}$. This criterion is satisfied by functions which are homologous to a martingale difference (a property which holds for regular functions in many systems). It can also be applied to the periodic Lorentz gas in the plane and shows recurrence for this model.</abstract><pub>Cambridge University Press</pub><doi>10.1017/S0143385799141701</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0143-3857
ispartof Ergodic theory and dynamical systems, 1999-10, Vol.19 (5), p.1233-1245
issn 0143-3857
1469-4417
language eng
recordid cdi_crossref_primary_10_1017_S0143385799141701
source Cambridge University Press Journals Complete
title Sur un critère de récurrence en dimension 2 pour les marches stationnaires, applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T21%3A38%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sur%20un%20crit%C3%A8re%20de%20r%C3%A9currence%20en%20dimension%202%20pour%20les%20marches%20stationnaires,%20applications&rft.jtitle=Ergodic%20theory%20and%20dynamical%20systems&rft.au=CONZE,%20J.-P.&rft.date=1999-10&rft.volume=19&rft.issue=5&rft.spage=1233&rft.epage=1245&rft.pages=1233-1245&rft.issn=0143-3857&rft.eissn=1469-4417&rft_id=info:doi/10.1017/S0143385799141701&rft_dat=%3Ccambridge_cross%3E10_1017_S0143385799141701%3C/cambridge_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1017_S0143385799141701&rfr_iscdi=true