Sur un critère de récurrence en dimension 2 pour les marches stationnaires, applications

Let $(E,{\cal A},\mu,T)$ be a dynamical system and let $\Phi$ be a function defined on $E$ with values in $\mathbb{R}^2$. We give a criterion, the central limit theorem along subsequences of positive density, for the recurrence of the corresponding ‘stationary walk’ defined as the cocycle $\big(\sum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 1999-10, Vol.19 (5), p.1233-1245
1. Verfasser: CONZE, J.-P.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $(E,{\cal A},\mu,T)$ be a dynamical system and let $\Phi$ be a function defined on $E$ with values in $\mathbb{R}^2$. We give a criterion, the central limit theorem along subsequences of positive density, for the recurrence of the corresponding ‘stationary walk’ defined as the cocycle $\big(\sum^{n-1}_{j=0}\Phi(T^jx)\big)_{n\geq1}$. This criterion is satisfied by functions which are homologous to a martingale difference (a property which holds for regular functions in many systems). It can also be applied to the periodic Lorentz gas in the plane and shows recurrence for this model.
ISSN:0143-3857
1469-4417
DOI:10.1017/S0143385799141701