Topological entropy of polygon exchange transformations and polygonal billiards
We study the topological entropy of a class of transformations with mild singularities: the generalized polygon exchanges. This class contains, in particular, polygonal billiards. Our main result is a geometric estimate, from above, on the topological entropy of generalized polygon exchanges. One of...
Gespeichert in:
Veröffentlicht in: | Ergodic theory and dynamical systems 1997-08, Vol.17 (4), p.849-867 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the topological entropy of a class of transformations with mild
singularities: the generalized polygon exchanges.
This class contains, in particular, polygonal billiards. Our main result is a
geometric estimate, from above, on the topological
entropy of generalized polygon exchanges. One of the applications of our
estimate is that the topological entropy of polygonal
billiards is zero. This implies the subexponential growth of various
geometric quantities associated with a polygon.
Other applications are to the piecewise isometries in two dimensions, and to
billiards in rational polyhedra. |
---|---|
ISSN: | 0143-3857 1469-4417 |
DOI: | 10.1017/S0143385797088044 |