Isomorphism classes of products of powers for graphic flows
A graphic flow is a totally minimal flow such that the only minimal subsets of the product flow are the graphs of the powers of the defining homeomorphism [2]. We consider flows of the form $(X^{k},T^{L})$, where $(X,T)$ is graphic, $k$ is a positive integer, and $L:\{1,\ldots,k\}\to {\Bbb Z}\setmin...
Gespeichert in:
Veröffentlicht in: | Ergodic theory and dynamical systems 1997-04, Vol.17 (2), p.297-305 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A graphic flow is a totally minimal flow such that the only
minimal subsets of the product flow are the graphs of the powers
of the defining homeomorphism [2]. We consider flows of the
form $(X^{k},T^{L})$, where $(X,T)$ is graphic, $k$ is a positive
integer, and $L:\{1,\ldots,k\}\to {\Bbb Z}\setminus \{0\}$. It is
shown that the isomorphism classes of these flows are
determined by the cardinality of $L^{-1}(p)$. |
---|---|
ISSN: | 0143-3857 1469-4417 |
DOI: | 10.1017/S0143385797069770 |