Isomorphism classes of products of powers for graphic flows

A graphic flow is a totally minimal flow such that the only minimal subsets of the product flow are the graphs of the powers of the defining homeomorphism [2]. We consider flows of the form $(X^{k},T^{L})$, where $(X,T)$ is graphic, $k$ is a positive integer, and $L:\{1,\ldots,k\}\to {\Bbb Z}\setmin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 1997-04, Vol.17 (2), p.297-305
Hauptverfasser: AUSLANDER, J., MARKLEY, N.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A graphic flow is a totally minimal flow such that the only minimal subsets of the product flow are the graphs of the powers of the defining homeomorphism [2]. We consider flows of the form $(X^{k},T^{L})$, where $(X,T)$ is graphic, $k$ is a positive integer, and $L:\{1,\ldots,k\}\to {\Bbb Z}\setminus \{0\}$. It is shown that the isomorphism classes of these flows are determined by the cardinality of $L^{-1}(p)$.
ISSN:0143-3857
1469-4417
DOI:10.1017/S0143385797069770