Stable topological transitivity properties of ℝ n -extensions of hyperbolic transformations

We consider ℝ n skew-products of a class of hyperbolic dynamical systems. It was proved by Niţică and Pollicott [Transitivity of Euclidean extensions of Anosov diffeomorphisms. Ergod. Th. & Dynam. Sys.   25 (2005), 257–269] that for an Anosov diffeomorphism ϕ of an infranilmanifold Λ there is (s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2012-08, Vol.32 (4), p.1435-1443
Hauptverfasser: MOSS, A., WALKDEN, C. P.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider ℝ n skew-products of a class of hyperbolic dynamical systems. It was proved by Niţică and Pollicott [Transitivity of Euclidean extensions of Anosov diffeomorphisms. Ergod. Th. & Dynam. Sys.   25 (2005), 257–269] that for an Anosov diffeomorphism ϕ of an infranilmanifold Λ there is (subject to avoiding natural obstructions) an open and dense set f :Λ→ℝ N for which the skew-product ϕ f ( x , v )=(ϕ( x ), v + f ( x )) on Λ×ℝ N has a dense orbit. We prove a similar result in the context of an Axiom A hyperbolic flow on an attractor.
ISSN:0143-3857
1469-4417
DOI:10.1017/S0143385711000228