Chlorsulfuron-Resistant Sugarbeet: Cross-Resistance and Physiological Basis of Resistance
Greenhouse and laboratory studies were conducted to determine the extent of cross-resistance of chlorsulfuron-resistant sugarbeet (CR1-B) to other herbicides that inhibit acetolactate synthase (ALS) and to determine the physiological basis of resistance. Cross-resistance to metsulfuron, imazaquin, a...
Gespeichert in:
Veröffentlicht in: | Weed science 1992-09, Vol.40 (3), p.378-383 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Greenhouse and laboratory studies were conducted to determine the extent of cross-resistance of chlorsulfuron-resistant sugarbeet (CR1-B) to other herbicides that inhibit acetolactate synthase (ALS) and to determine the physiological basis of resistance. Cross-resistance to metsulfuron, imazaquin, and imazethapyr was not evident, while only marginal cross-resistance was observed to triasulfuron, DPX-L5300, and nicosulfuron. CR1-B was moderately resistant to chlorsulfuron and chlorimuron and was highly cross-resistant to thifensulfuron and primisulfuron. Further greenhouse studies demonstrated that CR1-B was not significantly injured by thifensulfuron and primisulfuron applied at or exceeding the field use rate. Studies with 14C-primisulfuron showed that differential absorption or metabolism of primisulfuron could not account for the observed resistance. ALS enzyme assays showed that the CR1-B ALS enzyme activity was 66, 26, and 13 times less sensitive to chlorsulfuron, thifensulfuron, and primisulfuron inhibition, respectively, compared to ALS enzyme extracted from sensitive sugarbeets. An altered ALS enzyme, which is less sensitive to sulfonylurea herbicide inhibition, appears to be the physiological basis of resistance. |
---|---|
ISSN: | 0043-1745 1550-2759 |
DOI: | 10.1017/S0043174500051778 |