Matrix coefficients of the large discrete series representations of Sp(2; R) as hypergeometric series of two variables

We investigate the radial part of the matrix coefficients with minimal K-types of the large discrete series representations of Sp(2; R). They satisfy certain difference-differential equations derived from Schmid operators. This system is reduced to a holonomic system of rank 4, which is finally foun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nagoya mathematical journal 2012-12, Vol.208, p.201-263
1. Verfasser: Oda, Takayuki
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the radial part of the matrix coefficients with minimal K-types of the large discrete series representations of Sp(2; R). They satisfy certain difference-differential equations derived from Schmid operators. This system is reduced to a holonomic system of rank 4, which is finally found to be equivalent to higher-order hypergeometric series in the sense of Appell and Kampé de Fériet.
ISSN:0027-7630
2152-6842
DOI:10.1017/S0027763000010631