Young diagrammatic methods in non-commutative invariant theory

In this paper we will study some aspects of non-commutative invariant theory. Let V be a finite-dimensional vector space over a field K of characteristic zero and let K[V] = K⊕V⊕S 2(V)⊕…, and K′V› = K⊕V⊕⊕2(V)⊕⊕3 V⊕& be respectively the symmetric algebra and the tensor algebra over V. Let G be a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nagoya mathematical journal 1991-03, Vol.121, p.15-34
1. Verfasser: Teranishi, Yasuo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 34
container_issue
container_start_page 15
container_title Nagoya mathematical journal
container_volume 121
creator Teranishi, Yasuo
description In this paper we will study some aspects of non-commutative invariant theory. Let V be a finite-dimensional vector space over a field K of characteristic zero and let K[V] = K⊕V⊕S 2(V)⊕…, and K′V› = K⊕V⊕⊕2(V)⊕⊕3 V⊕& be respectively the symmetric algebra and the tensor algebra over V. Let G be a subgroup of GL(V). Then G acts on K[V] and K′V›. Much of this paper is devoted to the study of the (non-commutative) invariant ring K′V› G of G acting on K′V›. In the first part of this paper, we shall study the invariant ring in the following situation.
doi_str_mv 10.1017/S002776300000338X
format Article
fullrecord <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S002776300000338X</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S002776300000338X</cupid><sourcerecordid>10_1017_S002776300000338X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c158x-b1fb7d4dd30b9b140f77fbc70dc88852decec794b829af4a7016fc5c4438955c3</originalsourceid><addsrcrecordid>eNp9kNtKxDAQhoMouK4-gHd9gWiOTXojyOIJFrxQQa9Kjt0sppGkXdy3t8W9E5ybgfnmG4YfgEuMrjDC4voFISJETdFclMr3I7AgmBNYS0aOwWLGcOan4KyU7bQkaUMX4OYjjX1X2aC6rGJUQzBVdMMm2VKFvupTD02KcRwmsnPTaKdyUP1QDRuX8v4cnHj1WdzFoS_B2_3d6-oRrp8fnla3a2gwl99QY6-FZdZSpBuNGfJCeG0EskZKyYl1xhnRMC1JozxTAuHaG24Yo7Lh3NAlwL93TU6lZOfbrxyiyvsWo3YOoP0TwOTQg6OizsF2rt2mMffTn_9YP-0VXnM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Young diagrammatic methods in non-commutative invariant theory</title><source>Project Euclid Open Access</source><source>Open Access Titles of Japan</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>Teranishi, Yasuo</creator><creatorcontrib>Teranishi, Yasuo</creatorcontrib><description>In this paper we will study some aspects of non-commutative invariant theory. Let V be a finite-dimensional vector space over a field K of characteristic zero and let K[V] = K⊕V⊕S 2(V)⊕…, and K′V› = K⊕V⊕⊕2(V)⊕⊕3 V⊕&amp; be respectively the symmetric algebra and the tensor algebra over V. Let G be a subgroup of GL(V). Then G acts on K[V] and K′V›. Much of this paper is devoted to the study of the (non-commutative) invariant ring K′V› G of G acting on K′V›. In the first part of this paper, we shall study the invariant ring in the following situation.</description><identifier>ISSN: 0027-7630</identifier><identifier>EISSN: 2152-6842</identifier><identifier>DOI: 10.1017/S002776300000338X</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><ispartof>Nagoya mathematical journal, 1991-03, Vol.121, p.15-34</ispartof><rights>Copyright © Editorial Board of Nagoya Mathematical Journal 1991</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c158x-b1fb7d4dd30b9b140f77fbc70dc88852decec794b829af4a7016fc5c4438955c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Teranishi, Yasuo</creatorcontrib><title>Young diagrammatic methods in non-commutative invariant theory</title><title>Nagoya mathematical journal</title><addtitle>Nagoya Mathematical Journal</addtitle><description>In this paper we will study some aspects of non-commutative invariant theory. Let V be a finite-dimensional vector space over a field K of characteristic zero and let K[V] = K⊕V⊕S 2(V)⊕…, and K′V› = K⊕V⊕⊕2(V)⊕⊕3 V⊕&amp; be respectively the symmetric algebra and the tensor algebra over V. Let G be a subgroup of GL(V). Then G acts on K[V] and K′V›. Much of this paper is devoted to the study of the (non-commutative) invariant ring K′V› G of G acting on K′V›. In the first part of this paper, we shall study the invariant ring in the following situation.</description><issn>0027-7630</issn><issn>2152-6842</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNp9kNtKxDAQhoMouK4-gHd9gWiOTXojyOIJFrxQQa9Kjt0sppGkXdy3t8W9E5ybgfnmG4YfgEuMrjDC4voFISJETdFclMr3I7AgmBNYS0aOwWLGcOan4KyU7bQkaUMX4OYjjX1X2aC6rGJUQzBVdMMm2VKFvupTD02KcRwmsnPTaKdyUP1QDRuX8v4cnHj1WdzFoS_B2_3d6-oRrp8fnla3a2gwl99QY6-FZdZSpBuNGfJCeG0EskZKyYl1xhnRMC1JozxTAuHaG24Yo7Lh3NAlwL93TU6lZOfbrxyiyvsWo3YOoP0TwOTQg6OizsF2rt2mMffTn_9YP-0VXnM</recordid><startdate>199103</startdate><enddate>199103</enddate><creator>Teranishi, Yasuo</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199103</creationdate><title>Young diagrammatic methods in non-commutative invariant theory</title><author>Teranishi, Yasuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c158x-b1fb7d4dd30b9b140f77fbc70dc88852decec794b829af4a7016fc5c4438955c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Teranishi, Yasuo</creatorcontrib><collection>CrossRef</collection><jtitle>Nagoya mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Teranishi, Yasuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Young diagrammatic methods in non-commutative invariant theory</atitle><jtitle>Nagoya mathematical journal</jtitle><addtitle>Nagoya Mathematical Journal</addtitle><date>1991-03</date><risdate>1991</risdate><volume>121</volume><spage>15</spage><epage>34</epage><pages>15-34</pages><issn>0027-7630</issn><eissn>2152-6842</eissn><abstract>In this paper we will study some aspects of non-commutative invariant theory. Let V be a finite-dimensional vector space over a field K of characteristic zero and let K[V] = K⊕V⊕S 2(V)⊕…, and K′V› = K⊕V⊕⊕2(V)⊕⊕3 V⊕&amp; be respectively the symmetric algebra and the tensor algebra over V. Let G be a subgroup of GL(V). Then G acts on K[V] and K′V›. Much of this paper is devoted to the study of the (non-commutative) invariant ring K′V› G of G acting on K′V›. In the first part of this paper, we shall study the invariant ring in the following situation.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S002776300000338X</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-7630
ispartof Nagoya mathematical journal, 1991-03, Vol.121, p.15-34
issn 0027-7630
2152-6842
language eng
recordid cdi_crossref_primary_10_1017_S002776300000338X
source Project Euclid Open Access; Open Access Titles of Japan; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete
title Young diagrammatic methods in non-commutative invariant theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T04%3A53%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Young%20diagrammatic%20methods%20in%20non-commutative%20invariant%20theory&rft.jtitle=Nagoya%20mathematical%20journal&rft.au=Teranishi,%20Yasuo&rft.date=1991-03&rft.volume=121&rft.spage=15&rft.epage=34&rft.pages=15-34&rft.issn=0027-7630&rft.eissn=2152-6842&rft_id=info:doi/10.1017/S002776300000338X&rft_dat=%3Ccambridge_cross%3E10_1017_S002776300000338X%3C/cambridge_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1017_S002776300000338X&rfr_iscdi=true