Young diagrammatic methods in non-commutative invariant theory
In this paper we will study some aspects of non-commutative invariant theory. Let V be a finite-dimensional vector space over a field K of characteristic zero and let K[V] = K⊕V⊕S 2(V)⊕…, and K′V› = K⊕V⊕⊕2(V)⊕⊕3 V⊕& be respectively the symmetric algebra and the tensor algebra over V. Let G be a...
Gespeichert in:
Veröffentlicht in: | Nagoya mathematical journal 1991-03, Vol.121, p.15-34 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we will study some aspects of non-commutative invariant theory. Let V be a finite-dimensional vector space over a field K of characteristic zero and let
K[V] = K⊕V⊕S
2(V)⊕…, and
K′V› = K⊕V⊕⊕2(V)⊕⊕3
V⊕& be respectively the symmetric algebra and the tensor algebra over V. Let G be a subgroup of GL(V). Then G acts on K[V] and K′V›. Much of this paper is devoted to the study of the (non-commutative) invariant ring K′V›
G
of G acting on K′V›. In the first part of this paper, we shall study the invariant ring in the following situation. |
---|---|
ISSN: | 0027-7630 2152-6842 |
DOI: | 10.1017/S002776300000338X |