CONVEX REGIONS IN THE PLANE AND THEIR DOMES
We make a detailed study of the relation of a euclidean convex region $\Omega \subset \mathbb C$ to $\mathrm{Dome} (\Omega)$. The dome is the relative boundary, in the upper halfspace model of hyperbolic space, of the hyperbolic convex hull of the complement of $\Omega$. The first result is to prove...
Gespeichert in:
Veröffentlicht in: | Proceedings of the London Mathematical Society 2006-05, Vol.92 (3), p.624-654 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We make a detailed study of the relation of a euclidean convex region $\Omega \subset \mathbb C$ to $\mathrm{Dome} (\Omega)$. The dome is the relative boundary, in the upper halfspace model of hyperbolic space, of the hyperbolic convex hull of the complement of $\Omega$. The first result is to prove that the nearest point retraction $r: \Omega \to \mathrm{Dome} (\Omega)$ is 2-quasiconformal. The second is to establish precise estimates of the distortion of $r$ near $\partial \Omega$. |
---|---|
ISSN: | 0024-6115 1460-244X |
DOI: | 10.1017/S002461150501573X |