CONVEX REGIONS IN THE PLANE AND THEIR DOMES

We make a detailed study of the relation of a euclidean convex region $\Omega \subset \mathbb C$ to $\mathrm{Dome} (\Omega)$. The dome is the relative boundary, in the upper halfspace model of hyperbolic space, of the hyperbolic convex hull of the complement of $\Omega$. The first result is to prove...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the London Mathematical Society 2006-05, Vol.92 (3), p.624-654
Hauptverfasser: EPSTEIN, D. B. A., MARDEN, A., MARKOVIC, V.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We make a detailed study of the relation of a euclidean convex region $\Omega \subset \mathbb C$ to $\mathrm{Dome} (\Omega)$. The dome is the relative boundary, in the upper halfspace model of hyperbolic space, of the hyperbolic convex hull of the complement of $\Omega$. The first result is to prove that the nearest point retraction $r: \Omega \to \mathrm{Dome} (\Omega)$ is 2-quasiconformal. The second is to establish precise estimates of the distortion of $r$ near $\partial \Omega$.
ISSN:0024-6115
1460-244X
DOI:10.1017/S002461150501573X