Experimental and computational investigations of hypersonic flow about compression ramps

Comprehensive results of a joint experimental and computational study of the two-dimensional flow field over flat plate/compression ramp configurations at Mach 14 are presented. These geometries are aimed to simulate, in a simplified manner, the region around deflected control surfaces of hypersonic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 1995-01, Vol.283, p.17-42
Hauptverfasser: Simeonides, G., Haase, W.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Comprehensive results of a joint experimental and computational study of the two-dimensional flow field over flat plate/compression ramp configurations at Mach 14 are presented. These geometries are aimed to simulate, in a simplified manner, the region around deflected control surfaces of hypersonic re-entry vehicles. The test cases considered cover a range of realistic flow conditions with Reynolds numbers to the hinge line varying between 4.5 × 105 and 2.6 × 106 (with a reference length taken as the distance between the leading edge and the hinge line) and a wall-to-total-temperature ratio of 0.12. The combination of flow and geometric parameters gives rise to fully laminar strong shock wave/boundary layer interactions with extensive separation, and transitional interactions with transition occurring near the reattachment point. A fully turbulent interaction is also considered which, however, was only approximately achieved in the experiments by means of excessive tripping of the oncoming hypersonic laminar boundary layer. Emphasis has been placed upon the quality and level of confidence of both experiments and computations, including a discussion on the laminar-turbulent transition process and the associated striation phenomenon. The favourable comparison between the experimental and computational results has profided the grounds for an enhanced understanding of the relevant flow processes and their modelling. Particularly in relation to transitional shock wave/boundary layer interactions, where laminar-turbulent transition is promoted by the adverse pressure gradient and flow concavity in the reattachment region, a method is proposed to compute extreme adverse effects in the interaction region avoiding such inhibiting requirements as transition modelling or turbulence modelling over separated regions.
ISSN:0022-1120
1469-7645
DOI:10.1017/S0022112095002229