Temporal stability of Jeffery–Hamel flow
In this study of the temporal stability of Jeffery–Hamel flow, the critical Reynolds number based on the volume flux, Rc, and that based on the axial velocity, Rec, are computed. It is found that both critical Reynolds numbers decrease very rapidly when the half-angle of the channel, α, increases, s...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 1994-06, Vol.268, p.71-88 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study of the temporal stability of Jeffery–Hamel flow, the critical Reynolds number based on the volume flux, Rc, and that based on the axial velocity, Rec, are computed. It is found that both critical Reynolds numbers decrease very rapidly when the half-angle of the channel, α, increases, such that the quantity αRc remains very nearly constant and αRecis a nearly linear function of α. For a short channel there can be more than one value of the critical Reynolds number. A fully nonlinear analysis, for Re close to the critical value, indicates that the loss of stability is supercritical. The resulting asymmetric oscillatory solutions show staggered arrays of vortices positioned along the channel. |
---|---|
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/S0022112094001266 |