The decay power law in grid-generated turbulence

The effect of initial conditions on the decay exponent and coefficient and virtual origin in the decay power-law form for the variation of the variance of the turbulent velocity downstream of biplane grids constructed of rods of both round and square cross-section is determined. This effect is deter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 1990-10, Vol.219 (1), p.195-214
Hauptverfasser: Mohamed, Mohsen S., Larue, John C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effect of initial conditions on the decay exponent and coefficient and virtual origin in the decay power-law form for the variation of the variance of the turbulent velocity downstream of biplane grids constructed of rods of both round and square cross-section is determined. This effect is determined for data obtained as part of the present study as well as from previous studies. These studies cover a Reynolds number range from 6000 to 68000, mesh sizes of 2.54 and 5.08 cm, and solidities of 0.34 and 0.44. It is shown that the choice of the virtual origin and the use of data in the non-homogeneous portion of the flow can have a significant influence on the value of the parameters in the decay power-law. Criteria are developed to identify the nearly homogeneous and isotropic portion of the flow. These criteria include low values of the velocity skewness, constancy of the skewness of the velocity derivative and balance of the turbulent kinetic energy equation. Results based on data selected by means of these criteria show that the decay exponent and virtual origin are independent of initial conditions such as Reynolds number, mesh size, solidity, and rod shape and surface roughness with values of respectively 1.30 and 0. In contrast and as expected, the decay coefficient is found to be a function of these initial conditions. Thus, the downstream variation of the variance of the turbulent velocity is universally self-similar.
ISSN:0022-1120
1469-7645
DOI:10.1017/S0022112090002919