Chaotic mixing in a bounded three-dimensional flow

Even though the first theoretical example of chaotic advection was a three-dimensional flow (Hénon 1966), the number of theoretical studies addressing chaos and mixing in three-dimensional flows is small. One problem is that an experimentally tractable three-dimensional system that allows detailed e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2000-08, Vol.417, p.265-301
Hauptverfasser: FOUNTAIN, G. O., KHAKHAR, D. V., MEZIĆ, I., OTTINO, J. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Even though the first theoretical example of chaotic advection was a three-dimensional flow (Hénon 1966), the number of theoretical studies addressing chaos and mixing in three-dimensional flows is small. One problem is that an experimentally tractable three-dimensional system that allows detailed experimental and computational investigation had not been available. A prototypical, bounded, three-dimensional, moderate-Reynolds-number flow is presented; this system lends itself to detailed experimental observation and allows high-precision computational inspection of geometrical and dynamical effects. The flow structure, captured by means of cuts with a laser sheet (experimental Poincaré section), is visualized via continuously injected fluorescent dye streams, and reveals detailed chaotic structures and chains of high-period islands. Numerical experiments are performed and compared with particle image velocimetry (PIV) and flow visualization results. Predictions of existing theories for chaotic advection in three-dimensional volume-preserving flows are tested. The ratio of two frequencies of particle motion – the frequency of motion around the vertical axis and the frequency of recirculation in the plane containing the axis – is identified as the crucial parameter. Using this parameter, the number of islands in the chain can be predicted. The same parameter – using as a base-case the integrable motion – allows the identification of operating conditions where small perturbations lead to nearly complete mixing.
ISSN:0022-1120
1469-7645
DOI:10.1017/S002211200000118X