Coefficients of ergodicity for stochastically monotone Markov chains

In this paper we show that to each distance d defined on the finite state space S of a strongly ergodic Markov chain there corresponds a coefficient ρ d of ergodicity based on the Wasserstein metric. For a class of stochastically monotone transition matrices P , the infimum over all such coefficient...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied probability 1992-12, Vol.29 (4), p.850-860
Hauptverfasser: Pflug, G. Ch, Schachermayer, W.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 860
container_issue 4
container_start_page 850
container_title Journal of applied probability
container_volume 29
creator Pflug, G. Ch
Schachermayer, W.
description In this paper we show that to each distance d defined on the finite state space S of a strongly ergodic Markov chain there corresponds a coefficient ρ d of ergodicity based on the Wasserstein metric. For a class of stochastically monotone transition matrices P , the infimum over all such coefficients is given by the spectral radius of P – R , where R = lim k P k and is attained. This result has a probabilistic interpretation of a control of the speed of convergence of by the metric d and is linked to the second eigenvalue of P.
doi_str_mv 10.1017/S0021900200043722
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S0021900200043722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1017_S0021900200043722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c902-4ee88c15472ff084aa773164a299f304ae212c4423f2c2895e4b97e42a340a493</originalsourceid><addsrcrecordid>eNplkM1KxDAUhYM4YJ3xAdzlBao3N7eTZin1F0ZcOPtyjYlWO40kRejb26I7N-dw-OAsPiHOFVwoUObyGQCVnQMASBvEI1EoMlW5BYPHolhwufATcZrzB4CiyppCXDfRh9C5zg9jljFIn97i67zHSYaYZB6je-c8do77fpKHOMQxDl4-cvqM33Jm3ZA3YhW4z_7sr9dif3uzb-7L3dPdQ3O1K50FLMn7unaqIoMhQE3Mxmi1JUZrgwZijwodEeqADmtbeXqxxhOyJmCyei3U761LMefkQ_uVugOnqVXQLhbafxb0D4YiTt8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Coefficients of ergodicity for stochastically monotone Markov chains</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Pflug, G. Ch ; Schachermayer, W.</creator><creatorcontrib>Pflug, G. Ch ; Schachermayer, W.</creatorcontrib><description>In this paper we show that to each distance d defined on the finite state space S of a strongly ergodic Markov chain there corresponds a coefficient ρ d of ergodicity based on the Wasserstein metric. For a class of stochastically monotone transition matrices P , the infimum over all such coefficients is given by the spectral radius of P – R , where R = lim k P k and is attained. This result has a probabilistic interpretation of a control of the speed of convergence of by the metric d and is linked to the second eigenvalue of P.</description><identifier>ISSN: 0021-9002</identifier><identifier>EISSN: 1475-6072</identifier><identifier>DOI: 10.1017/S0021900200043722</identifier><language>eng</language><ispartof>Journal of applied probability, 1992-12, Vol.29 (4), p.850-860</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c902-4ee88c15472ff084aa773164a299f304ae212c4423f2c2895e4b97e42a340a493</citedby><cites>FETCH-LOGICAL-c902-4ee88c15472ff084aa773164a299f304ae212c4423f2c2895e4b97e42a340a493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pflug, G. Ch</creatorcontrib><creatorcontrib>Schachermayer, W.</creatorcontrib><title>Coefficients of ergodicity for stochastically monotone Markov chains</title><title>Journal of applied probability</title><description>In this paper we show that to each distance d defined on the finite state space S of a strongly ergodic Markov chain there corresponds a coefficient ρ d of ergodicity based on the Wasserstein metric. For a class of stochastically monotone transition matrices P , the infimum over all such coefficients is given by the spectral radius of P – R , where R = lim k P k and is attained. This result has a probabilistic interpretation of a control of the speed of convergence of by the metric d and is linked to the second eigenvalue of P.</description><issn>0021-9002</issn><issn>1475-6072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNplkM1KxDAUhYM4YJ3xAdzlBao3N7eTZin1F0ZcOPtyjYlWO40kRejb26I7N-dw-OAsPiHOFVwoUObyGQCVnQMASBvEI1EoMlW5BYPHolhwufATcZrzB4CiyppCXDfRh9C5zg9jljFIn97i67zHSYaYZB6je-c8do77fpKHOMQxDl4-cvqM33Jm3ZA3YhW4z_7sr9dif3uzb-7L3dPdQ3O1K50FLMn7unaqIoMhQE3Mxmi1JUZrgwZijwodEeqADmtbeXqxxhOyJmCyei3U761LMefkQ_uVugOnqVXQLhbafxb0D4YiTt8</recordid><startdate>199212</startdate><enddate>199212</enddate><creator>Pflug, G. Ch</creator><creator>Schachermayer, W.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199212</creationdate><title>Coefficients of ergodicity for stochastically monotone Markov chains</title><author>Pflug, G. Ch ; Schachermayer, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c902-4ee88c15472ff084aa773164a299f304ae212c4423f2c2895e4b97e42a340a493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pflug, G. Ch</creatorcontrib><creatorcontrib>Schachermayer, W.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pflug, G. Ch</au><au>Schachermayer, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coefficients of ergodicity for stochastically monotone Markov chains</atitle><jtitle>Journal of applied probability</jtitle><date>1992-12</date><risdate>1992</risdate><volume>29</volume><issue>4</issue><spage>850</spage><epage>860</epage><pages>850-860</pages><issn>0021-9002</issn><eissn>1475-6072</eissn><abstract>In this paper we show that to each distance d defined on the finite state space S of a strongly ergodic Markov chain there corresponds a coefficient ρ d of ergodicity based on the Wasserstein metric. For a class of stochastically monotone transition matrices P , the infimum over all such coefficients is given by the spectral radius of P – R , where R = lim k P k and is attained. This result has a probabilistic interpretation of a control of the speed of convergence of by the metric d and is linked to the second eigenvalue of P.</abstract><doi>10.1017/S0021900200043722</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9002
ispartof Journal of applied probability, 1992-12, Vol.29 (4), p.850-860
issn 0021-9002
1475-6072
language eng
recordid cdi_crossref_primary_10_1017_S0021900200043722
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
title Coefficients of ergodicity for stochastically monotone Markov chains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T04%3A43%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coefficients%20of%20ergodicity%20for%20stochastically%20monotone%20Markov%20chains&rft.jtitle=Journal%20of%20applied%20probability&rft.au=Pflug,%20G.%20Ch&rft.date=1992-12&rft.volume=29&rft.issue=4&rft.spage=850&rft.epage=860&rft.pages=850-860&rft.issn=0021-9002&rft.eissn=1475-6072&rft_id=info:doi/10.1017/S0021900200043722&rft_dat=%3Ccrossref%3E10_1017_S0021900200043722%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true