Coefficients of ergodicity for stochastically monotone Markov chains
In this paper we show that to each distance d defined on the finite state space S of a strongly ergodic Markov chain there corresponds a coefficient ρ d of ergodicity based on the Wasserstein metric. For a class of stochastically monotone transition matrices P , the infimum over all such coefficient...
Gespeichert in:
Veröffentlicht in: | Journal of applied probability 1992-12, Vol.29 (4), p.850-860 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 860 |
---|---|
container_issue | 4 |
container_start_page | 850 |
container_title | Journal of applied probability |
container_volume | 29 |
creator | Pflug, G. Ch Schachermayer, W. |
description | In this paper we show that to each distance
d
defined on the finite state space
S
of a strongly ergodic Markov chain there corresponds a coefficient
ρ
d
of ergodicity based on the Wasserstein metric. For a class of stochastically monotone transition matrices
P
, the infimum over all such coefficients is given by the spectral radius of
P – R
, where
R
= lim
k
P
k
and is attained. This result has a probabilistic interpretation of a control of the speed of convergence of
by the metric
d
and is linked to the second eigenvalue of
P. |
doi_str_mv | 10.1017/S0021900200043722 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S0021900200043722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1017_S0021900200043722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c902-4ee88c15472ff084aa773164a299f304ae212c4423f2c2895e4b97e42a340a493</originalsourceid><addsrcrecordid>eNplkM1KxDAUhYM4YJ3xAdzlBao3N7eTZin1F0ZcOPtyjYlWO40kRejb26I7N-dw-OAsPiHOFVwoUObyGQCVnQMASBvEI1EoMlW5BYPHolhwufATcZrzB4CiyppCXDfRh9C5zg9jljFIn97i67zHSYaYZB6je-c8do77fpKHOMQxDl4-cvqM33Jm3ZA3YhW4z_7sr9dif3uzb-7L3dPdQ3O1K50FLMn7unaqIoMhQE3Mxmi1JUZrgwZijwodEeqADmtbeXqxxhOyJmCyei3U761LMefkQ_uVugOnqVXQLhbafxb0D4YiTt8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Coefficients of ergodicity for stochastically monotone Markov chains</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Pflug, G. Ch ; Schachermayer, W.</creator><creatorcontrib>Pflug, G. Ch ; Schachermayer, W.</creatorcontrib><description>In this paper we show that to each distance
d
defined on the finite state space
S
of a strongly ergodic Markov chain there corresponds a coefficient
ρ
d
of ergodicity based on the Wasserstein metric. For a class of stochastically monotone transition matrices
P
, the infimum over all such coefficients is given by the spectral radius of
P – R
, where
R
= lim
k
P
k
and is attained. This result has a probabilistic interpretation of a control of the speed of convergence of
by the metric
d
and is linked to the second eigenvalue of
P.</description><identifier>ISSN: 0021-9002</identifier><identifier>EISSN: 1475-6072</identifier><identifier>DOI: 10.1017/S0021900200043722</identifier><language>eng</language><ispartof>Journal of applied probability, 1992-12, Vol.29 (4), p.850-860</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c902-4ee88c15472ff084aa773164a299f304ae212c4423f2c2895e4b97e42a340a493</citedby><cites>FETCH-LOGICAL-c902-4ee88c15472ff084aa773164a299f304ae212c4423f2c2895e4b97e42a340a493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pflug, G. Ch</creatorcontrib><creatorcontrib>Schachermayer, W.</creatorcontrib><title>Coefficients of ergodicity for stochastically monotone Markov chains</title><title>Journal of applied probability</title><description>In this paper we show that to each distance
d
defined on the finite state space
S
of a strongly ergodic Markov chain there corresponds a coefficient
ρ
d
of ergodicity based on the Wasserstein metric. For a class of stochastically monotone transition matrices
P
, the infimum over all such coefficients is given by the spectral radius of
P – R
, where
R
= lim
k
P
k
and is attained. This result has a probabilistic interpretation of a control of the speed of convergence of
by the metric
d
and is linked to the second eigenvalue of
P.</description><issn>0021-9002</issn><issn>1475-6072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNplkM1KxDAUhYM4YJ3xAdzlBao3N7eTZin1F0ZcOPtyjYlWO40kRejb26I7N-dw-OAsPiHOFVwoUObyGQCVnQMASBvEI1EoMlW5BYPHolhwufATcZrzB4CiyppCXDfRh9C5zg9jljFIn97i67zHSYaYZB6je-c8do77fpKHOMQxDl4-cvqM33Jm3ZA3YhW4z_7sr9dif3uzb-7L3dPdQ3O1K50FLMn7unaqIoMhQE3Mxmi1JUZrgwZijwodEeqADmtbeXqxxhOyJmCyei3U761LMefkQ_uVugOnqVXQLhbafxb0D4YiTt8</recordid><startdate>199212</startdate><enddate>199212</enddate><creator>Pflug, G. Ch</creator><creator>Schachermayer, W.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199212</creationdate><title>Coefficients of ergodicity for stochastically monotone Markov chains</title><author>Pflug, G. Ch ; Schachermayer, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c902-4ee88c15472ff084aa773164a299f304ae212c4423f2c2895e4b97e42a340a493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pflug, G. Ch</creatorcontrib><creatorcontrib>Schachermayer, W.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pflug, G. Ch</au><au>Schachermayer, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coefficients of ergodicity for stochastically monotone Markov chains</atitle><jtitle>Journal of applied probability</jtitle><date>1992-12</date><risdate>1992</risdate><volume>29</volume><issue>4</issue><spage>850</spage><epage>860</epage><pages>850-860</pages><issn>0021-9002</issn><eissn>1475-6072</eissn><abstract>In this paper we show that to each distance
d
defined on the finite state space
S
of a strongly ergodic Markov chain there corresponds a coefficient
ρ
d
of ergodicity based on the Wasserstein metric. For a class of stochastically monotone transition matrices
P
, the infimum over all such coefficients is given by the spectral radius of
P – R
, where
R
= lim
k
P
k
and is attained. This result has a probabilistic interpretation of a control of the speed of convergence of
by the metric
d
and is linked to the second eigenvalue of
P.</abstract><doi>10.1017/S0021900200043722</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9002 |
ispartof | Journal of applied probability, 1992-12, Vol.29 (4), p.850-860 |
issn | 0021-9002 1475-6072 |
language | eng |
recordid | cdi_crossref_primary_10_1017_S0021900200043722 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing |
title | Coefficients of ergodicity for stochastically monotone Markov chains |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T04%3A43%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coefficients%20of%20ergodicity%20for%20stochastically%20monotone%20Markov%20chains&rft.jtitle=Journal%20of%20applied%20probability&rft.au=Pflug,%20G.%20Ch&rft.date=1992-12&rft.volume=29&rft.issue=4&rft.spage=850&rft.epage=860&rft.pages=850-860&rft.issn=0021-9002&rft.eissn=1475-6072&rft_id=info:doi/10.1017/S0021900200043722&rft_dat=%3Ccrossref%3E10_1017_S0021900200043722%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |