Coefficients of ergodicity for stochastically monotone Markov chains

In this paper we show that to each distance d defined on the finite state space S of a strongly ergodic Markov chain there corresponds a coefficient ρ d of ergodicity based on the Wasserstein metric. For a class of stochastically monotone transition matrices P , the infimum over all such coefficient...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied probability 1992-12, Vol.29 (4), p.850-860
Hauptverfasser: Pflug, G. Ch, Schachermayer, W.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we show that to each distance d defined on the finite state space S of a strongly ergodic Markov chain there corresponds a coefficient ρ d of ergodicity based on the Wasserstein metric. For a class of stochastically monotone transition matrices P , the infimum over all such coefficients is given by the spectral radius of P – R , where R = lim k P k and is attained. This result has a probabilistic interpretation of a control of the speed of convergence of by the metric d and is linked to the second eigenvalue of P.
ISSN:0021-9002
1475-6072
DOI:10.1017/S0021900200043722