Coefficients of ergodicity for stochastically monotone Markov chains
In this paper we show that to each distance d defined on the finite state space S of a strongly ergodic Markov chain there corresponds a coefficient ρ d of ergodicity based on the Wasserstein metric. For a class of stochastically monotone transition matrices P , the infimum over all such coefficient...
Gespeichert in:
Veröffentlicht in: | Journal of applied probability 1992-12, Vol.29 (4), p.850-860 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we show that to each distance
d
defined on the finite state space
S
of a strongly ergodic Markov chain there corresponds a coefficient
ρ
d
of ergodicity based on the Wasserstein metric. For a class of stochastically monotone transition matrices
P
, the infimum over all such coefficients is given by the spectral radius of
P – R
, where
R
= lim
k
P
k
and is attained. This result has a probabilistic interpretation of a control of the speed of convergence of
by the metric
d
and is linked to the second eigenvalue of
P. |
---|---|
ISSN: | 0021-9002 1475-6072 |
DOI: | 10.1017/S0021900200043722 |