Searching for a one-dimensional random walker
Let { x k } k ≧ − r be a simple Bernoulli random walk with x – r = 0. An integer valued threshold ϕ = {ϕ k } k ≧1 is called a search plan if |ϕ k +1 −ϕ k |≦1 for all k ≧ 1. If ϕ is a search plan let τ ϕ be the smallest integer k such that x and ϕ cross or touch at k. We show the existence of a searc...
Gespeichert in:
Veröffentlicht in: | Journal of applied probability 1974-03, Vol.11 (1), p.86-93 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let {
x
k
}
k
≧ −
r
be a simple Bernoulli random walk with
x
–
r
= 0. An integer valued threshold ϕ = {ϕ
k
}
k
≧1
is called a search plan if |ϕ
k
+1
−ϕ
k
|≦1 for all
k
≧ 1. If
ϕ
is a search plan let
τ
ϕ
be the smallest integer
k
such that
x
and
ϕ
cross or touch at
k.
We show the existence of a search plan
ϕ
such that
ϕ
1
= 0, the definition of
ϕ
does not depend on
r
, and the first crossing time
τ
ϕ
has finite mean (and in fact finite moments of all orders). The analogous problem for the Wiener process is also solved. |
---|---|
ISSN: | 0021-9002 1475-6072 |
DOI: | 10.1017/S0021900200036421 |