Searching for a one-dimensional random walker

Let { x k } k ≧ − r be a simple Bernoulli random walk with x – r = 0. An integer valued threshold ϕ = {ϕ k } k ≧1 is called a search plan if |ϕ k +1 −ϕ k |≦1 for all k ≧ 1. If ϕ is a search plan let τ ϕ be the smallest integer k such that x and ϕ cross or touch at k. We show the existence of a searc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied probability 1974-03, Vol.11 (1), p.86-93
1. Verfasser: McCabe, Bernard J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let { x k } k ≧ − r be a simple Bernoulli random walk with x – r = 0. An integer valued threshold ϕ = {ϕ k } k ≧1 is called a search plan if |ϕ k +1 −ϕ k |≦1 for all k ≧ 1. If ϕ is a search plan let τ ϕ be the smallest integer k such that x and ϕ cross or touch at k. We show the existence of a search plan ϕ such that ϕ 1 = 0, the definition of ϕ does not depend on r , and the first crossing time τ ϕ has finite mean (and in fact finite moments of all orders). The analogous problem for the Wiener process is also solved.
ISSN:0021-9002
1475-6072
DOI:10.1017/S0021900200036421