Some asymptotic results for transient random walks with applications to insurance risk

We consider a real-valued random walk which drifts to -∞ and is such that the step distribution is heavy tailed, say, subexponential. We investigate the asymptotic tail behaviour of the distribution of the upwards first passage times. As an application, we obtain the exact rate of convergence for th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied probability 2001-03, Vol.38 (1), p.108-121
1. Verfasser: Baltrūnas, Aleksandras
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a real-valued random walk which drifts to -∞ and is such that the step distribution is heavy tailed, say, subexponential. We investigate the asymptotic tail behaviour of the distribution of the upwards first passage times. As an application, we obtain the exact rate of convergence for the ruin probability in finite time. Our result supplements similar theorems in risk theory.
ISSN:0021-9002
1475-6072
DOI:10.1017/S0021900200018544