Zero-temperature ising spin dynamics on the homogeneous tree of degree three

We investigate zero-temperature dynamics for a homogeneous ferromagnetic Ising model on the homogeneous tree of degree three ( ) with random (i.i.d. Bernoulli) spin configuration at time 0. Letting θ denote the probability that any particular vertex has a +1 initial spin, for infinite spin clusters...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied probability 2000-09, Vol.37 (3), p.736-747
1. Verfasser: Howard, C. Douglas
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate zero-temperature dynamics for a homogeneous ferromagnetic Ising model on the homogeneous tree of degree three ( ) with random (i.i.d. Bernoulli) spin configuration at time 0. Letting θ denote the probability that any particular vertex has a +1 initial spin, for infinite spin clusters do not exist at time 0 but we show that infinite ‘spin chains’ (doubly infinite paths of vertices with a common spin) exist in abundance at any time ϵ > 0. We study the structure of the subgraph of generated by the vertices in time-ϵ spin chains. We show the existence of a phase transition in the sense that, for some critical θ c with spin chains almost surely never form for θ < θ c but almost surely do form in finite time for θ > θ c . We relate these results to certain quantities of physical interest, such as the t → ∞ asymptotics of the probability that any particular vertex changes spin after time t .
ISSN:0021-9002
1475-6072
DOI:10.1017/S0021900200015953