On the Inverse of Erlang's Function
Erlang's function B (λ, C ) gives the blocking probability that occurs when Poisson traffic of intensity λ is offered to a link consisting of C circuits. However, when dimensioning a telecommunications network, it is more convenient to use the inverse C (λ, B ) of Erlang's function, which...
Gespeichert in:
Veröffentlicht in: | Journal of applied probability 1998-03, Vol.35 (1), p.246-252 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 252 |
---|---|
container_issue | 1 |
container_start_page | 246 |
container_title | Journal of applied probability |
container_volume | 35 |
creator | Berezner, S. A. Krzesinski, A. E. Taylor, P. G. |
description | Erlang's function
B
(λ,
C
) gives the blocking probability that occurs when Poisson traffic of intensity λ is offered to a link consisting of
C
circuits. However, when dimensioning a telecommunications network, it is more convenient to use the inverse
C
(λ,
B
) of Erlang's function, which gives the number of circuits needed to carry Poisson traffic λ with blocking probability at most
B
. This paper derives simple bounds for
C
(λ,
B
). These bounds are close to each other and the upper bound provides an accurate linear approximation to
C
(λ,
B
) which is asymptotically exact in the limit as λ approaches infinity with
B
fixed |
doi_str_mv | 10.1017/S0021900200014856 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S0021900200014856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1017_S0021900200014856</sourcerecordid><originalsourceid>FETCH-LOGICAL-c243t-3f183f337ffa82772aae96b913e7e2dcbc8bef3b7f830f593e68aa7f202a24ca3</originalsourceid><addsrcrecordid>eNplj8FKAzEURYMoOLZ-gLuAC1fRl7yZSbKU0mqh0IV2PbyJeVqpGUlGwb_XQXdu7l2cy4UjxIWGaw3a3jwAGO1_AgB07Zr2SFS6to1qwZpjUU1YTfxUnJXyOo0abytxuU1yfIlynT5jLlEOLJf5QOn5qsjVRwrjfkhzccJ0KPH8r2dit1o-Lu7VZnu3XtxuVDA1jgpZO2REy0zOWGuIom97rzHaaJ5CH1wfGXvLDoEbj7F1RJYNGDJ1IJwJ_fsb8lBKjty95_0b5a9OQzdZdv8s8RvVdEM_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the Inverse of Erlang's Function</title><source>Jstor Complete Legacy</source><source>JSTOR Mathematics & Statistics</source><creator>Berezner, S. A. ; Krzesinski, A. E. ; Taylor, P. G.</creator><creatorcontrib>Berezner, S. A. ; Krzesinski, A. E. ; Taylor, P. G.</creatorcontrib><description>Erlang's function
B
(λ,
C
) gives the blocking probability that occurs when Poisson traffic of intensity λ is offered to a link consisting of
C
circuits. However, when dimensioning a telecommunications network, it is more convenient to use the inverse
C
(λ,
B
) of Erlang's function, which gives the number of circuits needed to carry Poisson traffic λ with blocking probability at most
B
. This paper derives simple bounds for
C
(λ,
B
). These bounds are close to each other and the upper bound provides an accurate linear approximation to
C
(λ,
B
) which is asymptotically exact in the limit as λ approaches infinity with
B
fixed</description><identifier>ISSN: 0021-9002</identifier><identifier>EISSN: 1475-6072</identifier><identifier>DOI: 10.1017/S0021900200014856</identifier><language>eng</language><ispartof>Journal of applied probability, 1998-03, Vol.35 (1), p.246-252</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c243t-3f183f337ffa82772aae96b913e7e2dcbc8bef3b7f830f593e68aa7f202a24ca3</citedby><cites>FETCH-LOGICAL-c243t-3f183f337ffa82772aae96b913e7e2dcbc8bef3b7f830f593e68aa7f202a24ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Berezner, S. A.</creatorcontrib><creatorcontrib>Krzesinski, A. E.</creatorcontrib><creatorcontrib>Taylor, P. G.</creatorcontrib><title>On the Inverse of Erlang's Function</title><title>Journal of applied probability</title><description>Erlang's function
B
(λ,
C
) gives the blocking probability that occurs when Poisson traffic of intensity λ is offered to a link consisting of
C
circuits. However, when dimensioning a telecommunications network, it is more convenient to use the inverse
C
(λ,
B
) of Erlang's function, which gives the number of circuits needed to carry Poisson traffic λ with blocking probability at most
B
. This paper derives simple bounds for
C
(λ,
B
). These bounds are close to each other and the upper bound provides an accurate linear approximation to
C
(λ,
B
) which is asymptotically exact in the limit as λ approaches infinity with
B
fixed</description><issn>0021-9002</issn><issn>1475-6072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNplj8FKAzEURYMoOLZ-gLuAC1fRl7yZSbKU0mqh0IV2PbyJeVqpGUlGwb_XQXdu7l2cy4UjxIWGaw3a3jwAGO1_AgB07Zr2SFS6to1qwZpjUU1YTfxUnJXyOo0abytxuU1yfIlynT5jLlEOLJf5QOn5qsjVRwrjfkhzccJ0KPH8r2dit1o-Lu7VZnu3XtxuVDA1jgpZO2REy0zOWGuIom97rzHaaJ5CH1wfGXvLDoEbj7F1RJYNGDJ1IJwJ_fsb8lBKjty95_0b5a9OQzdZdv8s8RvVdEM_</recordid><startdate>19980301</startdate><enddate>19980301</enddate><creator>Berezner, S. A.</creator><creator>Krzesinski, A. E.</creator><creator>Taylor, P. G.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19980301</creationdate><title>On the Inverse of Erlang's Function</title><author>Berezner, S. A. ; Krzesinski, A. E. ; Taylor, P. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c243t-3f183f337ffa82772aae96b913e7e2dcbc8bef3b7f830f593e68aa7f202a24ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berezner, S. A.</creatorcontrib><creatorcontrib>Krzesinski, A. E.</creatorcontrib><creatorcontrib>Taylor, P. G.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berezner, S. A.</au><au>Krzesinski, A. E.</au><au>Taylor, P. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Inverse of Erlang's Function</atitle><jtitle>Journal of applied probability</jtitle><date>1998-03-01</date><risdate>1998</risdate><volume>35</volume><issue>1</issue><spage>246</spage><epage>252</epage><pages>246-252</pages><issn>0021-9002</issn><eissn>1475-6072</eissn><abstract>Erlang's function
B
(λ,
C
) gives the blocking probability that occurs when Poisson traffic of intensity λ is offered to a link consisting of
C
circuits. However, when dimensioning a telecommunications network, it is more convenient to use the inverse
C
(λ,
B
) of Erlang's function, which gives the number of circuits needed to carry Poisson traffic λ with blocking probability at most
B
. This paper derives simple bounds for
C
(λ,
B
). These bounds are close to each other and the upper bound provides an accurate linear approximation to
C
(λ,
B
) which is asymptotically exact in the limit as λ approaches infinity with
B
fixed</abstract><doi>10.1017/S0021900200014856</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9002 |
ispartof | Journal of applied probability, 1998-03, Vol.35 (1), p.246-252 |
issn | 0021-9002 1475-6072 |
language | eng |
recordid | cdi_crossref_primary_10_1017_S0021900200014856 |
source | Jstor Complete Legacy; JSTOR Mathematics & Statistics |
title | On the Inverse of Erlang's Function |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A51%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Inverse%20of%20Erlang's%20Function&rft.jtitle=Journal%20of%20applied%20probability&rft.au=Berezner,%20S.%20A.&rft.date=1998-03-01&rft.volume=35&rft.issue=1&rft.spage=246&rft.epage=252&rft.pages=246-252&rft.issn=0021-9002&rft.eissn=1475-6072&rft_id=info:doi/10.1017/S0021900200014856&rft_dat=%3Ccrossref%3E10_1017_S0021900200014856%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |