On the Inverse of Erlang's Function

Erlang's function B (λ, C ) gives the blocking probability that occurs when Poisson traffic of intensity λ is offered to a link consisting of C circuits. However, when dimensioning a telecommunications network, it is more convenient to use the inverse C (λ, B ) of Erlang's function, which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied probability 1998-03, Vol.35 (1), p.246-252
Hauptverfasser: Berezner, S. A., Krzesinski, A. E., Taylor, P. G.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Erlang's function B (λ, C ) gives the blocking probability that occurs when Poisson traffic of intensity λ is offered to a link consisting of C circuits. However, when dimensioning a telecommunications network, it is more convenient to use the inverse C (λ, B ) of Erlang's function, which gives the number of circuits needed to carry Poisson traffic λ with blocking probability at most B . This paper derives simple bounds for C (λ, B ). These bounds are close to each other and the upper bound provides an accurate linear approximation to C (λ, B ) which is asymptotically exact in the limit as λ approaches infinity with B fixed
ISSN:0021-9002
1475-6072
DOI:10.1017/S0021900200014856